Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Eng Online ; 23(1): 89, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215308

RESUMEN

BACKGROUND: To treat stenosed coronary arteries, percutaneous transluminal coronary angioplasty (PTCA) balloon catheters must combine pushability, trackability, crossability, and rewrap behavior. The existing anatomic track model (ASTM F2394) for catheter testing lacks 3D morphology, vessel tortuosity, and compliance, making evaluating performance characteristics difficult. This study aimed to develop a three-dimensional patient-specific phantom (3DPSP) for device testing and safe training for interventional cardiologists. METHODS: A range of silicone materials with different shore hardnesses (00-30-45 A) and wall thicknesses (0.5 mm, 1 mm, 2 mm) were tested to determine compliance for creating coronary vessel phantoms. Compliance was assessed using optical coherence tomography (OCT) and compared to values in the literature. Stenosis was induced using multilayer casting and brushing methods, with gypsum added for calcification. The radial tensile properties of the samples were investigated, and the relationship between Young's modulus and compliance was determined. Various methods have been introduced to approximate the friction between silicone and real coronary vessel walls. Computerized tomography (CT) scans were used to obtain patient-specific anatomy from the femoral artery to the coronary arteries. Artery lumens were segmented from the CT scans to create dissolvable 3D-printed core models. RESULTS: A 15A shore hardness silicone yielded an experimental compliance of 12.3-22.4 m m 2 mmHg · 10 3 for stenosed tubes and 14.7-57.9 m m 2 mmHg · 10 3 for uniform tubes, aligning closely with the literature data (6.28-40.88 m m 2 mmHg · 10 3 ). The Young's modulus ranged from 43.2 to 75.5 kPa and 56.6-67.9 kPa for the uniform and calcified materials, respectively. The dependency of the compliance on the wall thickness, Young's modulus, and inner diameter could be shown. Introducing a lubricant reduced the silicone friction coefficient from 0.52 to 0.13. The 3DPSP was successfully fabricated, and comparative analyses were conducted among eight commercially available catheters. CONCLUSION: This study presents a novel method for crafting 3DPSPs with realistic mechanical and frictional properties. The proposed approach enables the creation of comprehensive and anatomically precise setups spanning the right femoral artery to the coronary arteries, highlighting the importance of such realistic environments for advancing medical device development and fostering safe training conditions.


Asunto(s)
Angioplastia Coronaria con Balón , Vasos Coronarios , Humanos , Vasos Coronarios/diagnóstico por imagen , Angioplastia Coronaria con Balón/instrumentación , Siliconas/química , Modelación Específica para el Paciente , Fantasmas de Imagen , Ensayo de Materiales , Tomografía de Coherencia Óptica , Modelos Anatómicos
2.
Biomed Eng Online ; 22(1): 94, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37742021

RESUMEN

BACKGROUND: Eight commercially available percutaneous transluminal coronary angioplasty (PTCA), including semi-compliant and non-compliant balloons, have been assessed in detail on their tip, balloon, shaft, RX-Port, and hypotube design. Important performance characteristics such as tip deformation, balloon elongation, and deflation rate have been quantified. METHODS: Five catheters of each model were evaluated during various tests. The robustness of the tips was evaluated through compression, measuring any occurrence of damage. The longitudinal growth of the balloons was recorded during inflation up to Rated Burst Pressure (RBP). The forces required to move the catheter forward and retract it into the guide catheter were measured in a simulated use test setup. The deflation behavior was studied by measuring extracted contrast media over time. Furthermore, balloon compliance and catheter dimensions were investigated. RESULTS: The outer dimensions of the catheter were found to be smallest at the hypotube (0.59-0.69 mm) and highest at the balloon, respectively, the crossing profile (0.9-1.2 mm). The tip diameter increased after compression by 1.7-22%. Cross-sections of the folded balloons revealed a tri- and two-fold, respectively. The measured balloon elongation ranged from 0.6 to 2.0 mm. After the inflation of the balloon, an increase in friction between the guide wire and the catheter was observed on four catheters. A maximum increase of 0.12 N to 1.07 N was found. Cross-sections of the RX-Port revealed a semicircular-shaped inflation lumen and a circular guide wire lumen. The measured deflation rate ranged from 0.004 to 0.013 µL/s, resulting in an estimated balloon deflation time of 10.2-28.1 s. CONCLUSION: This study provides valuable insights into the design characteristics of RX PTCA balloon catheters, which can contribute to facilitating the development of improved catheter designs and enhancing clinical outcomes. Distinctions between SC and NC catheters, such as balloon performance and dimensions, are evident. It is important to note that no single catheter excels in all aspects, as each possesses unique strengths. Therefore, it is essential to consider individual intervention requirements when selecting a catheter. The research also identifies specific catheter weaknesses, such as reduced wall thickness, fringes at the tip, and reduced performance characteristics.


Asunto(s)
Angioplastia Coronaria con Balón , Compresión de Datos , Catéteres , Medios de Contraste
3.
Biomed Eng Online ; 20(1): 110, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702259

RESUMEN

BACKGROUND: Percutaneous transluminal coronary angioplasty (PTCA) balloon catheters must withstand high pressures required for the lesion treatment, pushing loads during insertion, and pulling loads during withdrawal. These loads pose a challenge especially for polymeric tubular shafts with small cross sections. In order to enable new design innovations and to better understand the mechanics of current catheter technologies, the tensile properties of polyamide (PA) 12 were investigated. PA 12 dog bone specimens and medical PA 12 tubes were either stored at ambient temperature and humidity or conditioned in water, and subjected to tensile loads at different temperatures. In addition, the effect on the tensile properties of the necking process, a forming process to reduce the wall thickness of the tubes, was determined. RESULTS: The tested tubes showed a reduction in both Young's Modulus (- 41.5%) and yield stress (- 29.2%) compared to standardized specimens. Furthermore, an increase in temperature and water absorption softens the material and reduces the mechanical properties like the Young's Modulus and the yield stress. It was found that the material strengthens during the necking process. Likely due to the orientation of the polymers chain molecules in load direction (Rösler et al., 2007), the Young's Modulus of the material could be increased by 43.5%. Furthermore, the absence of a yield point after necking allows for a greater loading capacity of the material without unstable neck growth. Besides the strengthening, the ultimate strain is reduced by 50%. This indicates that the necking process induces plastic deformation. CONCLUSION: The investigation showed that the environmental conditions like temperature and humidity can influence mechanical properties. It could also be shown that pre-forming processes such as necking can enhance the mechanical properties, such as the Young's Modulus, while reducing the wall thickness. These findings suggest possible further development of catheters with a small cross section and higher mechanical strength and highlight the importance to account for the targeted operating temperature during the design process.


Asunto(s)
Angioplastia Coronaria con Balón , Nylons , Animales , Catéteres , Perros , Módulo de Elasticidad , Temperatura , Resistencia a la Tracción
4.
Ann Biomed Eng ; 45(5): 1172-1180, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28050727

RESUMEN

Active electronic implants are powered by primary batteries, which induces the necessity of implant replacement after battery depletion. This causes repeated interventions in a patients' life, which bears the risk of complications and is costly. By using energy harvesting devices to power the implant, device replacements may be avoided and the device size may be reduced dramatically. Recently, several groups presented prototypes of implants powered by subcutaneous solar cells. However, data about the expected real-life power output of subcutaneously implanted solar cells was lacking so far. In this study, we report the first real-life validation data of energy harvesting by subcutaneous solar cells. Portable light measurement devices that feature solar cells (cell area = 3.6 cm2) and continuously measure a subcutaneous solar cell's output power were built. The measurement devices were worn by volunteers in their daily routine in summer, autumn and winter. In addition to the measured output power, influences such as season, weather and human activity were analyzed. The obtained mean power over the whole study period was 67 µW (=19 µW cm-2), which is sufficient to power e.g. a cardiac pacemaker.


Asunto(s)
Electrónica/instrumentación , Implantes Experimentales , Estaciones del Año , Piel , Energía Solar , Humanos
5.
Ann Biomed Eng ; 41(1): 131-41, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22805983

RESUMEN

Energy-harvesting devices attract wide interest as power supplies of today's medical implants. Their long lifetime will spare patients from repeated surgical interventions. They also offer the opportunity to further miniaturize existing implants such as pacemakers, defibrillators or recorders of bio signals. A mass imbalance oscillation generator, which consists of a clockwork from a commercially available automatic wrist watch, was used as energy harvesting device to convert the kinetic energy from the cardiac wall motion to electrical energy. An MRI-based motion analysis of the left ventricle revealed basal regions to be energetically most favorable for the rotating unbalance of our harvester. A mathematical model was developed as a tool for optimizing the device's configuration. The model was validated by an in vitro experiment where an arm robot accelerated the harvesting device by reproducing the cardiac motion. Furthermore, in an in vivo experiment, the device was affixed onto a sheep heart for 1 h. The generated power in both experiments-in vitro (30 µW) and in vivo (16.7 µW)-is sufficient to power modern pacemakers.


Asunto(s)
Fuentes de Energía Bioeléctrica , Modelos Teóricos , Contracción Miocárdica , Animales , Femenino , Reproducibilidad de los Resultados , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA