Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Alzheimers Dement ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087352

RESUMEN

INTRODUCTION: In Down syndrome (DS), white matter hyperintensities (WMHs) are highly prevalent, yet their topography and association with sociodemographic data and Alzheimer's disease (AD) biomarkers remain largely unexplored. METHODS: In 261 DS adults and 131 euploid controls, fluid-attenuated inversion recovery magnetic resonance imaging scans were segmented and WMHs were extracted in concentric white matter layers and lobar regions. We tested associations with AD clinical stages, sociodemographic data, cerebrospinal fluid (CSF) AD biomarkers, and gray matter (GM) volume. RESULTS: In DS, total WMHs arose at age 43 and showed stronger associations with age than in controls. WMH volume increased along the AD continuum, particularly in periventricular regions, and frontal, parietal, and occipital lobes. Associations were found with CSF biomarkers and temporo-parietal GM volumes. DISCUSSION: WMHs increase 10 years before AD symptom onset in DS and are closely linked with AD biomarkers and neurodegeneration. This suggests a direct connection to AD pathophysiology, independent of vascular risks. HIGHLIGHTS: White matter hyperintensities (WMHs) increased 10 years before Alzheimer's disease symptom onset in Down syndrome (DS). WMHs were strongly associated in DS with the neurofilament light chain biomarker. WMHs were more associated in DS with gray matter volume in parieto-temporal areas.

2.
Neurology ; 103(4): e209676, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39074338

RESUMEN

BACKGROUND AND OBJECTIVES: Cerebral hemorrhages are an exclusion criterion and potential adverse effect of antiamyloid agents. It is, therefore, critical to characterize the natural history of cerebral microbleeds in populations genetically predisposed to Alzheimer disease (AD), such as Down syndrome (DS). We aimed to assess microbleed emergence in adults with DS across the AD spectrum, defining their topography and associations with clinical variables, cognitive outcomes, and fluid and neuroimaging biomarkers. METHODS: This cross-sectional study included participants aged 18 years or older from the Down-Alzheimer Barcelona Neuroimaging Initiative and Sant Pau Initiative on Neurodegeneration with T1-weighted and susceptibility-weighted images. Participants underwent comprehensive assessments, including apolipoprotein E (APOE) genotyping; fluid and plasma determinations of beta-amyloid, tau, and neurofilament light; cognitive outcomes (Cambridge Cognitive Examination and modified Cued Recall Test); and vascular risk factors (hypertension, diabetes mellitus, and dyslipidemia). We manually segmented microbleeds and characterized their topography. Associations between microbleed severity and AD biomarkers were explored using between-group comparisons (none vs 1 vs 2+) and multivariate linear models. RESULTS: We included 276 individuals with DS and 158 healthy euploid controls (mean age = 47.8 years, 50.92% female). Individuals with DS were more likely to have microbleeds than controls (20% vs 8.9%, p < 0.001), with more severe presentation (12% with 2+ vs 1.9%). Microbleeds increased with age (12% 20-30 years vs 60% > 60 years) and AD clinical stage (12.42% asymptomatic, 27.9% prodromal, 35.09% dementia) were more common in APOEε4 carriers (26% vs 18.3% noncarriers, p = 0.008), but not associated with vascular risk factors (p > 0.05). Microbleeds were predominantly posterior (cerebellum 33.66%; occipital 14.85%; temporal 21.29%) in participants with DS. Associations with microbleed severity were found for neuroimaging and fluid AD biomarkers, but only hippocampal volumes (standardized ß = -0.18 [-0.31, -0.06], p < 0.005) and CSF p-tau-181 concentrations (ß = 0.26 [0.12, 0.41], p < 0.005) survived regression controlling for age and disease stage, respectively. Microbleeds had limited effect on cognitive outcomes. DISCUSSION: In participants with DS, microbleeds present with a posterior, lobar predominance, are associated with disease severity, but do not affect cognitive performance. These results suggest an interplay between AD pathology and vascular lesions, implicating microbleeds as a risk factor limiting the use of antiamyloid agents in this population.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Hemorragia Cerebral , Síndrome de Down , Proteínas tau , Humanos , Síndrome de Down/líquido cefalorraquídeo , Síndrome de Down/complicaciones , Síndrome de Down/diagnóstico por imagen , Femenino , Masculino , Persona de Mediana Edad , Estudios Transversales , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/sangre , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/líquido cefalorraquídeo , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Adulto , Imagen por Resonancia Magnética , Anciano , Apolipoproteínas E/genética , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Proteínas de Neurofilamentos/sangre
3.
Brain Imaging Behav ; 15(6): 2824-2832, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34686969

RESUMEN

Accumulating evidence suggests that meditation practices have positive effects on brain ageing overall. The cingulate is known to be recruited during meditation, but research into possible effects of meditation on the ageing of the cingulate is currently missing. Thus, the present study was designed to help close this knowledge gap, with particular focus on the subgenual cingulate, a region involved in emotional regulation and autonomic and endocrine functions, making it potentially relevant for meditation. Here, we investigated differences in age-related gray matter loss between 50 long-term meditation practitioners (28 male, 22 female), aged between 24 and 77, and 50 age- and sex-matched controls. Areas of interest were four subregions of the subgenual cingulate gyrus (areas 25, 33, s24, and s32) defined as per the Julich-Brain atlas. Our study revealed a significant age-related decline in all subregions in both meditators and controls, but with significantly lower rates of annual tissue loss in meditators, specifically in left and right area s32 and right area 25. These regions have been shown to play a role in mood regulation, autonomic processing, and the integration of emotion and cognitive processes, which are all involved in and impacted by meditation. Overall, the results add further evidence to the emerging notion that meditation may slow the effects of ageing on the brain.


Asunto(s)
Giro del Cíngulo , Meditación , Adulto , Corteza Cerebral , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA