Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem J ; 449(2): 373-88, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23095045

RESUMEN

Plant-specific DOF (DNA-binding with one finger)-type transcription factors regulate various biological processes. In the present study we characterized a silique-abundant gene AtDOF (Arabidopsis thaliana DOF) 4.2 for its functions in Arabidopsis. AtDOF4.2 is localized in the nuclear region and has transcriptional activation activity in both yeast and plant protoplast assays. The T-M-D motif in AtDOF4.2 is essential for its activation. AtDOF4.2-overexpressing plants exhibit an increased branching phenotype and mutation of the T-M-D motif in AtDOF4.2 significantly reduces branching in transgenic plants. AtDOF4.2 may achieve this function through the up-regulation of three branching-related genes, AtSTM (A. thaliana SHOOT MERISTEMLESS), AtTFL1 (A. thaliana TERMINAL FLOWER1) and AtCYP83B1 (A. thaliana CYTOCHROME P450 83B1). The seeds of an AtDOF4.2-overexpressing plant show a collapse-like morphology in the epidermal cells of the seed coat. The mucilage contents and the concentration and composition of mucilage monosaccharides are significantly changed in the seed coat of transgenic plants. AtDOF4.2 may exert its effects on the seed epidermis through the direct binding and activation of the cell wall loosening-related gene AtEXPA9 (A. thaliana EXPANSIN-A9). The dof4.2 mutant did not exhibit changes in branching or its seed coat; however, the silique length and seed yield were increased. AtDOF4.4, which is a close homologue of AtDOF4.2, also promotes shoot branching and affects silique size and seed yield. Manipulation of these genes should have a practical use in the improvement of agronomic traits in important crops.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Brotes de la Planta/genética , Semillas/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Datos de Secuencia Molecular , Monosacáridos/metabolismo , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Protoplastos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Homología de Secuencia de Aminoácido , Factores de Transcripción/metabolismo
2.
Plant J ; 68(5): 830-43, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21801253

RESUMEN

The NIMA-related kinases (NEKs) are a family of serine/threonine kinases involved largely in cell cycle control in fungi, mammals and other eukaryotes. In Arabidopsis, NEK6 is involved in the regulation of epidermal cell morphogenesis. However, other roles of NEK6 in plants are less well understood. Here we report functions of NEK6 in plant growth, development and stress responses in Arabidopsis. NEK6 transcripts and proteins are induced by ethylene precursor ACC and salt stress. Expression of other NEK genes except NEK5 is also responsive to the two treatments. Overexpression and mutant analysis disclose that the NEK6 gene increases rosette growth, seed yield and lateral root formation. However, NEK6 appears to play a negative role in the control of seed size. The gene also promotes plant tolerance to salt stress and osmotic stress in its overexpressing plants. The NEK6 gene may achieve its function through suppression of ethylene biosynthesis and activation of CYCB1;1 and CYCA3;1 expression. Our present study reveals new functions of the NEK6 gene in plant growth and stress tolerance, and manipulation of NEK6 may improve important agronomic traits in crop plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas Quinasas/metabolismo , Estrés Fisiológico , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Manitol/farmacología , Mutagénesis Insercional , Quinasas Relacionadas con NIMA , Presión Osmótica , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteínas Quinasas/genética , Plantas Tolerantes a la Sal/efectos de los fármacos , Plantas Tolerantes a la Sal/enzimología , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Semillas/genética , Semillas/metabolismo , Semillas/ultraestructura , Cloruro de Sodio/farmacología
3.
Plant J ; 68(2): 302-13, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21707801

RESUMEN

NAC transcription factors play important roles in plant growth, development and stress responses. Previously, we identified multiple NAC genes in soybean (Glycine max). Here, we identify the roles of two genes, GmNAC11 and GmNAC20, in stress responses and other processes. The two genes were differentially induced by multiple abiotic stresses and plant hormones, and their transcripts were abundant in roots and cotyledons. Both genes encoded proteins that localized to the nucleus and bound to the core DNA sequence CGT[G/A]. In the protoplast assay system, GmNAC11 acts as a transcriptional activator, whereas GmNAC20 functions as a mild repressor; however, the C-terminal end of GmANC20 has transcriptional activation activity. Over-expression of GmNAC20 enhances salt and freezing tolerance in transgenic Arabidopsis plants; however, GmNAC11 over-expression only improves salt tolerance. Over-expression of GmNAC20 also promotes lateral root formation. GmNAC20 may regulate stress tolerance through activation of the DREB/CBF-COR pathway, and may control lateral root development by altering auxin signaling-related genes. GmNAC11 probably regulates DREB1A and other stress-related genes. The roles of the two GmNAC genes in stress tolerance were further analyzed in soybean transgenic hairy roots. These results provide a basis for genetic manipulation to improve the agronomic traits of important crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Cotiledón/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Sequías , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Congelación , Proteínas Fluorescentes Verdes , Ácidos Indolacéticos/metabolismo , Motivos de Nucleótidos/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Protoplastos , Tolerancia a la Sal , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Cloruro de Sodio/farmacología , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Glycine max/genética , Glycine max/crecimiento & desarrollo , Factores de Transcripción/genética , Activación Transcripcional
4.
Planta ; 232(5): 1033-43, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20683728

RESUMEN

Plant-specific transcription factor NAC proteins play essential roles in many biological processes such as development, senescence, morphogenesis, and stress signal transduction pathways. In the NAC family, some members function as transcription activators while others act as repressors. In the present study we found that though the full-length GmNAC20 from soybean did not have transcriptional activation activity, the carboxy-terminal activation domain of GmNAC20 had high transcriptional activation activity in the yeast assay system. Deletion experiments revealed an active repression domain with 35 amino acids, named NARD (NAC Repression Domain), in the d subdomain of NAC DNA-binding domain. NARD can reduce the transcriptional activation ability of diverse transcription factors when fused to either the amino-terminal or the carboxy-terminal of the transcription factors. NARD-like sequences are also present in other NAC family members and they are functional repression domain when fused to VP16 in plant protoplast assay system. Mutation analysis of conserved amino acid residues in NARD showed that the hydrophobic LVFY motif may partially contribute to the repression function. It is hypothesized that the interactions between the repression domain NARD and the carboxy-terminal activation domain may finally determine the ability of NAC family proteins to regulate downstream gene expressions.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/fisiología , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Datos de Secuencia Molecular , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Homología de Secuencia de Aminoácido , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional/genética
5.
PLoS One ; 4(9): e7209, 2009 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-19789627

RESUMEN

BACKGROUND: Soybean [Glycine max (L.) Merr.] is one of the most important crops for oil and protein resource. Improvement of stress tolerance will be beneficial for soybean seed production. PRINCIPAL FINDINGS: Six GmPHD genes encoding Alfin1-type PHD finger protein were identified and their expressions differentially responded to drought, salt, cold and ABA treatments. The six GmPHDs were nuclear proteins and showed ability to bind the cis-element "GTGGAG". The N-terminal domain of GmPHD played a major role in DNA binding. Using a protoplast assay system, we find that GmPHD1 to GmPHD5 had transcriptional suppression activity whereas GmPHD6 did not have. In yeast assay, the GmPHD6 can form homodimer and heterodimer with the other GmPHDs except GmPHD2. The N-terminal plus the variable regions but not the PHD-finger is required for the dimerization. Transgenic Arabidopsis plants overexpressing the GmPHD2 showed salt tolerance when compared with the wild type plants. This tolerance was likely achieved by diminishing the oxidative stress through regulation of downstream genes. SIGNIFICANCE: These results provide important clues for soybean stress tolerance through manipulation of PHD-type transcription regulator.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Proteínas de Soja/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Clonación Molecular , Dimerización , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente , Unión Proteica , Estructura Terciaria de Proteína , Protoplastos/metabolismo , Homología de Secuencia de Aminoácido , Estrés Fisiológico
6.
PLoS One ; 4(9): e6898, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19730734

RESUMEN

BACKGROUND: Trihelix transcription factors play important roles in light-regulated responses and other developmental processes. However, their functions in abiotic stress response are largely unclear. In this study, we identified two trihelix transcription factor genes GmGT-2A and GmGT-2B from soybean and further characterized their roles in abiotic stress tolerance. FINDINGS: Both genes can be induced by various abiotic stresses, and the encoded proteins were localized in nuclear region. In yeast assay, GmGT-2B but not GmGT-2A exhibits ability of transcriptional activation and dimerization. The N-terminal peptide of 153 residues in GmGT-2B was the minimal activation domain and the middle region between the two trihelices mediated the dimerization of the GmGT-2B. Transactivation activity of the GmGT-2B was also confirmed in plant cells. DNA binding analysis using yeast one-hybrid assay revealed that GmGT-2A could bind to GT-1bx, GT-2bx, mGT-2bx-2 and D1 whereas GmGT-2B could bind to the latter three elements. Overexpression of the GmGT-2A and GmGT-2B improved plant tolerance to salt, freezing and drought stress in transgenic Arabidopsis plants. Moreover, GmGT-2B-transgenic plants had more green seedlings compared to Col-0 under ABA treatment. Many stress-responsive genes were altered in GmGT-2A- and GmGT-2B-transgenic plants. CONCLUSION: These results indicate that GmGT-2A and GmGT-2B confer stress tolerance through regulation of a common set of genes and specific sets of genes. GmGT-2B also affects ABA sensitivity.


Asunto(s)
Arabidopsis/genética , Proteínas de Unión al ADN/genética , Glycine max/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Dimerización , Sequías , Etiquetas de Secuencia Expresada , Modelos Genéticos , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Activación Transcripcional , Técnicas del Sistema de Dos Híbridos
7.
Cell Res ; 19(11): 1291-304, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19581938

RESUMEN

MYB proteins play important roles in eukaryotic organisms. In plants, the R1R2R3-type MYB proteins function in cell cycle control. However, whether the R2R3-type MYB protein is also involved in the cell division process remains unknown. Here, we report that an R2R3-type transcription factor gene, AtMYB59, is involved in the regulation of cell cycle progression and root growth. The AtMYB59 protein is localized in the nuclei of onion epidermal cells and has transactivation activity. Expression of AtMYB59 in yeast cells suppresses cell proliferation, and the transformants have more nuclei and higher aneuploid DNA content with longer cells. Mutation in the conserved domain of AtMYB59 abolishes its effects on yeast cell growth. In synchronized Arabidopsis cell suspensions, the AtMYB59 gene is specifically expressed in the S phase during cell cycle progression. Expression and promoter-GUS analysis reveals that the AtMYB59 gene is abundantly expressed in roots. Transgenic plants overexpressing AtMYB59 have shorter roots compared with wild-type plants (Arabidopsis accession Col-0), and around half of the mitotic cells in root tips are at metaphase. Conversely, the null mutant myb59-1 has longer roots and fewer mitotic cells at metaphase than Col, suggesting that AtMYB59 may inhibit root growth by extending the metaphase of mitotic cells. AtMYB59 regulates many downstream genes, including the CYCB1;1 gene, probably through binding to MYB-responsive elements. These results support a role for AtMYB59 in cell cycle regulation and plant root growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Ciclo Celular/fisiología , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , División Celular/fisiología , Ciclina B/genética , Ciclina B/metabolismo , Regulación de la Expresión Génica de las Plantas , Cebollas/genética , Especificidad de Órganos , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/fisiología , Factores de Transcripción/genética , Levaduras/citología , Levaduras/crecimiento & desarrollo
8.
Cell Res ; 18(10): 1047-60, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18725908

RESUMEN

MYB-type transcription factors contain the conserved MYB DNA-binding domain of approximately 50 amino acids and are involved in the regulation of many aspects of plant growth, development, metabolism and stress responses. From soybean plants, we identified 156 GmMYB genes using our previously obtained 206 MYB unigenes, and 48 were found to have full-length open-reading frames. Expressions of all these identified genes were examined, and we found that expressions of 43 genes were changed upon treatment with ABA, salt, drought and/or cold stress. Three GmMYB genes, GmMYB76, GmMYB92 and GmMYB177, were chosen for further analysis. Using the yeast assay system, GmMYB76 and GmMYB92 were found to have transactivation activity and can form homodimers. GmMYB177 did not appear to have transactivation activity but can form heterodimers with GmMYB76. Yeast one-hybrid assay revealed that all the three GmMYBs could bind to cis-elements TAT AAC GGT TTT TT and CCG GAA AAA AGG AT, but with different affinity, and GmMYB92 could also bind to TCT CAC CTA CC. The transgenic Arabidopsis plants overexpressing GmMYB76 or GmMYB177 showed better performance than the GmMYB92-transgenic plants in salt and freezing tolerance. However, these transgenic plants exhibited reduced sensitivity to ABA treatment at germination stage in comparison with the wild-type plants. The three GmMYB genes differentially affected a subset of stress-responsive genes in addition to their regulation of a common subset of stress-responsive genes. These results indicate that the three GmMYB genes may play differential roles in stress tolerance, possibly through regulation of stress-responsive genes.


Asunto(s)
Arabidopsis/genética , Glycine max/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/clasificación , Arabidopsis/metabolismo , Congelación , Regulación de la Expresión Génica de las Plantas , Germinación/efectos de los fármacos , Germinación/genética , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas Proto-Oncogénicas c-myb/genética , Cloruro de Sodio/metabolismo , Glycine max/metabolismo , Activación Transcripcional/efectos de los fármacos
9.
Plant Biotechnol J ; 6(5): 486-503, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18384508

RESUMEN

WRKY-type transcription factors have multiple roles in the plant defence response and developmental processes. Their roles in the abiotic stress response remain obscure. In this study, 64 GmWRKY genes from soybean were identified, and were found to be differentially expressed under abiotic stresses. Nine GmWRKY proteins were tested for their transcription activation in the yeast assay system, and five showed such ability. In a DNA-binding assay, three proteins (GmWRKY13, GmWRKY27 and GmWRKY54) with a conserved WRKYGQK sequence in their DNA-binding domain could bind to the W-box (TTGAC). However, GmWRKY6 and GmWRKY21, with an altered sequence WRKYGKK, lost the ability to bind to the W-box. The function of three stress-induced genes, GmWRKY13, GmWRKY21 and GmWRKY54, was further investigated using a transgenic approach. GmWRKY21-transgenic Arabidopsis plants were tolerant to cold stress, whereas GmWRKY54 conferred salt and drought tolerance, possibly through the regulation of DREB2A and STZ/Zat10. Transgenic plants over-expressing GmWRKY13 showed increased sensitivity to salt and mannitol stress, but decreased sensitivity to abscisic acid, when compared with wild-type plants. In addition, GmWRKY13-transgenic plants showed an increase in lateral roots. These results indicate that the three GmWRKY genes play differential roles in abiotic stress tolerance, and that GmWRKY13 may function in both lateral root development and the abiotic stress response.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Congelación , Genes de Plantas , Glycine max/genética , Cloruro de Sodio/farmacología , Factores de Transcripción/genética , Adaptación Fisiológica/efectos de los fármacos , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , ADN de Plantas/metabolismo , Dimerización , Desastres , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Datos de Secuencia Molecular , Fenotipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN , Glycine max/efectos de los fármacos , Factores de Transcripción/química , Activación Transcripcional/efectos de los fármacos
10.
Planta ; 228(2): 225-40, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18365246

RESUMEN

From soybean plant, 131 bZIP genes were identified and named as GmbZIPs. The GmbZIPs can be classified into ten groups and more than one third of these GmbZIPs are responsive to at least one of the four treatments including ABA, salt, drought and cold stresses. Previous studies have shown that group A bZIP proteins are involved in ABA and stress signaling. We now chose four non-group A genes to study their features. The four proteins GmbZIP44, GmbZIP46, GmbZIP62 and GmbZIP78 belong to the group S, I, C and G, respectively, and can bind to GLM (GTGAGTCAT), ABRE (CCACGTGG) and PB-like (TGAAAA) elements with differential affinity in both the yeast one-hybrid assay and in vitro gel-shift analysis. GmbZIP46 can form homodimer or heterodimer with GmbZIP62 or GmMYB76. Transgenic Arabidopsis plants overexpressing the GmbZIP44, GmbZIP62 or GmbZIP78 showed reduced ABA sensitivity. However, all the transgenic plants were more tolerant to salt and freezing stresses when compared with the Col plants. The GmbZIP44, GmbZIP62 and GmbZIP78 may function in ABA signaling through upregulation of ABI1 and ABI2 and play roles in stress tolerance through regulation of various stress-responsive genes. These results indicate that GmbZIP44, GmbZIP62 and GmbZIP78 are negative regulators of ABA signaling and function in salt and freezing tolerance.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Glycine max/genética , Arabidopsis/genética , Clonación Molecular , Frío , Dimerización , Expresión Génica , Familia de Multigenes , Filogenia , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Salinidad , Transducción de Señal , Especificidad por Sustrato , Activación Transcripcional , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA