Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 27(33): 41350-41360, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32683624

RESUMEN

In this study, the efficiency of contaminant removal from a compact wastewater treatment plant (CWTP) in a university campus under different rain conditions was evaluated. Wastewater samples were collected weekly for 1 year and the physicochemical parameters were monitored. Removal efficiency higher than 77%, reaching values above 95% for samples with lower wastewater flow rates, was found for biological oxygen demand (BOD) and total and fecal coliforms. The pH values remained in the range of 6.0-8.0. However, pH values below 6.8 impaired the nitrification rate and, therefore, the removal of total Kjeldahl nitrogen (TKN) and ammonia was lower than the expected, with concentration values above those set by the Brazilian regulation for wastewater discharge. The results show that the flow rate of wastewater at the entrance of the CWTP is directly related to the rain events, thus affecting its efficiency, mainly in the removal of total solids, turbidity, and organic matter. The assessment of the treated wastewater reuse on site for agricultural purposes showed to be a prominent and more sustainable alternative regarding the discharge of wastewater into water bodies.


Asunto(s)
Aguas Residuales , Purificación del Agua , Agricultura , Brasil , Nitrógeno/análisis , Lluvia , Universidades , Eliminación de Residuos Líquidos , Aguas Residuales/análisis , Agua
2.
Artículo en Inglés | MEDLINE | ID: mdl-30845691

RESUMEN

This work evaluated the performance of an electrochemical oxidation process (EOP), using boron-doped diamond on niobium substrate (Nb/BDD), for the treatment of a reverse osmosis concentrate (ROC) produced from a petrochemical wastewater. The effects of applied current density (5, 10, or 20 mA·cm-2) and oxidation time (0 to 5 h) were evaluated following changes in chemical oxygen demand (COD) and total organic carbon (TOC). Current efficiency and specific energy consumption were also evaluated. Besides, the organic byproducts generated by EOP were analyzed by gas chromatography coupled to mass spectrometry (GC⁻MS). The results show that current densities and oxidation time lead to a COD and TOC reduction. For the 20 mA·cm-2, changes in the kinetic regime were found at 3 h and associated to the oxidation of inorganic ions by chlorinated species. After 3 h, the oxidants act in the organic oxidation, leading to a TOC removal of 71%. Although, due to the evolution of parallel reactions (O2, H2O2, and O3), the specific energy consumption also increased, the resulting consumption value of 66.5 kW·h·kg-1 of COD is considered a low energy requirement representing lower treatment costs. These results encourage the applicability of EOP equipped with Nb/BDD as a treatment process for the ROC.


Asunto(s)
Técnicas Electroquímicas/métodos , Niobio/química , Petróleo/análisis , Análisis de la Demanda Biológica de Oxígeno , Industria Química , Cromatografía de Gases y Espectrometría de Masas , Ósmosis , Aguas Residuales , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA