Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anticancer Res ; 42(1): 547-554, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34969764

RESUMEN

BACKGROUND/AIM: This study analysed the effect of α-tocopheryl succinate (α-TS) on the redox-state of leukemia and normal lymphocytes, as well as their sensitization to fifteen anticancer drugs. MATERIALS AND METHODS: Cell viability was analyzed by trypan blue staining and automated counting of live and dead cells. Apoptosis was analyzed by FITC-Annexin V test. Oxidative stress was evaluated by the intracellular levels of reactive oxygen species (ROS) and protein-carbonyl products. RESULTS: Most combinations (α-TS plus anticancer drug) exerted additive or antagonistic effects on the proliferation and viability of leukemia lymphocytes. α-TS combined with barasertib, bortezomib or lonafarnib showed a strong synergistic cytotoxic effect, which was best expressed in the case of barasestib. It was accompanied by impressive induction of apoptosis and increased production of ROS, but insignificant changes in protein-carbonyl levels. α-TS plus barasertib did not alter the viability and did not induce oxidative stress and apoptosis in normal lymphocytes. CONCLUSION: α-TS could be a promising adjuvant in second-line anticancer therapy, particularly in acute lymphoblastic leukemia, to reduce the therapeutic doses of barasertib, bortezomib, and lonafarnib, increasing their effectiveness and minimizing their side effects.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Leucemia/tratamiento farmacológico , alfa-Tocoferol/farmacología , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Células Jurkat/efectos de los fármacos , Leucemia/genética , Leucemia/patología , Linfocitos/efectos de los fármacos , Linfocitos/patología , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno , Succinatos/farmacología
2.
Anticancer Res ; 41(12): 6067-6076, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34848461

RESUMEN

BACKGROUND/AIM: We describe a pharmacological strategy for selectively targeting glioblastoma using a redox-active combination drug menadione/ascorbate (M/A), compared to the chemotherapeutic standard-of-care temozolomide (TMZ). MATERIALS AND METHODS: Experiments were conducted on glioblastoma mice (GS9L cell transplants - intracranial model), treated with M/A or TMZ. Tumor growth was monitored by magnetic resonance imaging. Effects of M/A and TMZ on cell viability and overproduction of mitochondrial superoxide were also evaluated on isolated glioblastoma cells (GS9L) and normal microglial cells (EOC2). RESULTS: M/A treatment suppressed tumor growth and increased survival without adverse drug-related side effects that were characteristic of TMZ. Survival was comparable with that of TMZ at the doses we have tested so far, although the effect of M/A on tumor growth was less pronounced than that of TMZ. M/A induced highly specific cytotoxicity accompanied by dose-dependent overproduction of mitochondrial superoxide in glioblastoma cells, but not in normal microglial cells. CONCLUSION: M/A differentiates glioblastoma cells from normal microglial cells, causing redox alterations and oxidative stress only in the tumor. This easier-to-tolerate treatment has a potential to support the surgery and conventional therapy of glioblastoma.


Asunto(s)
Antineoplásicos Alquilantes/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Glioblastoma/tratamiento farmacológico , Nivel de Atención/normas , Temozolomida/uso terapéutico , Animales , Antineoplásicos Alquilantes/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Humanos , Masculino , Ratones , Ratones Desnudos , Temozolomida/farmacología
3.
Anal Chem ; 93(5): 2828-2837, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33508934

RESUMEN

Total redox capacity (TRC) and oxidative stress (OxiStress) of biological objects (such as cells, tissues, and body fluids) are some of the most frequently analyzed parameters in life science. Development of highly sensitive molecular probes and analytical methods for detection of these parameters is a rapidly growing sector of BioTech's R&D industry. The aim of the present study was to develop quantum sensors for tracking the TRC and/or OxiStress in living biological objects using electron-paramagnetic resonance (EPR), magnetic resonance imaging (MRI), and optical imaging. We describe a two-set sensor system: (i) TRC sensor QD@CD-TEMPO and (ii) OxiStress sensor QD@CD-TEMPOH. Both redox sensors are composed of small-size quantum dots (QDs), coated with multinitroxide-functionalized cyclodextrin (paramagnetic CD-TEMPO or diamagnetic CD-TEMPOH) conjugated with triphenylphosphonium (TPP) groups. The TPP groups were added to achieve intracellular delivery and mitochondrial localization. Nitroxide residues interact simultaneously with various oxidizers and reducers, and the sensors are transformed from the paramagnetic radical form (QD@CD-TEMPO) into diamagnetic hydroxylamine form (QD@CD-TEMPOH) and vice-versa, because of nitroxide redox-cycling. These chemical transformations are accompanied by characteristic dynamics of their contrast features because of quenching of QD fluorescence by nitroxide radicals. The TRC sensor was applied for EPR analysis of cellular redox-status in vitro on isolated cells with different proliferative indexes, as well as for noninvasive MRI of redox imbalance and severe oxidative stress in vivo on mice with renal dysfunction.


Asunto(s)
Electrones , Estrés Oxidativo , Animales , Espectroscopía de Resonancia por Spin del Electrón , Imagen por Resonancia Magnética , Ratones , Imagen Óptica , Oxidación-Reducción
4.
Gen Physiol Biophys ; 38(3): 191-204, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31184306

RESUMEN

This study reports a non-invasive magnetic resonance imaging (MRI) of kidney dysfunction in mice, based on the induction of redox-imbalance and oxidative stress in the renal tissues, using mito-TEMPO as redox-sensitive contrast probe. Kidney dysfunction was triggered by hypercholesterolemia. The mice were divided in three groups: (i) on normal diet (ND); (ii) on cholesterol diet (CD); (iii) on cholesterol plus cholestyramine diet (CC). After 15 weeks feeding, the mice were subjected to the following analyses: plasma cholesterol levels; serum test for renal functionality; nitroxide-enhanced MRI of tissue redox-status in vivo; histochemical staining of tissue section to visualize renal damage; evaluation of total antioxidant capacity and oxidative stress on isolated tissue specimens. MRI signal of mito-TEMPO in the kidney was characterized by: high intensity and long life-time in CD mice, indicating a high oxidative capacity of renal tissues; poor intensity and short life-time in ND mice, indicating a high reducing capacity; moderate intensity and relatively short life-time in CC mice, indicating a protective effect of lipid-lowering drug. The data were confirmed on isolated tissue specimens, using conventional tests. They suggest that hypercholesterolemia induces redox-imbalance in kidney and this process could be visualized using MRI and mito-TEMPO as a redox-sensitive contrast.


Asunto(s)
Medios de Contraste , Riñón/diagnóstico por imagen , Riñón/fisiopatología , Imagen por Resonancia Magnética/métodos , Compuestos Organofosforados , Estrés Oxidativo , Piperidinas , Animales , Ratones , Oxidación-Reducción
5.
Anticancer Res ; 38(2): 825-831, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29374708

RESUMEN

BACKGROUND/AIM: Contrast nanocarriers as drug-delivery systems, capable of selective delivery to cancer cells and solid tumors, are essential for the development of new diagnostic and therapeutic (theranostic) strategies. The present study aimed to investigate the loading efficiency of chitosan-based polymersomes with fluorescent contrast substances [quantum dots (QDs) and conventional organic dyes] and the possibility to control their release from the polymer matrix into cells by chemical modifications and electroporation. MATERIALS AND METHODS: All investigated fluorophores were retained within the polymer globule via electrostatic and hydrophilic-hydrophobic interactions, without conjugation with the polymer. The fluorophore-loaded polymersomes were characterized by dynamic light scattering, zeta-potential titration, and fluorescence spectroscopy. The release of fluorophore from the polymersomes, passively or after electroporation, was detected by 5-step spin-ultrafiltration, combined with fluorescence spectroscopy of the upper phase (supernatant) of the filter unit. Passive intracellular delivery of the nanoparticles to HeLa cells was detected by fluorescence confocal microscopy. RESULTS: The QDs were retained tightly and continuously in the polymer matrix, while the organic fluorophores [fluorescein isothiocyanate (FITC), FITC-dextran10,000 and FITC-dextran70,000] were released rapidly from the polymersomes. The detergent Brij significantly increased the retention of FITC-dextran10,000 in the polymer globule. Electroporation up to 1000 V/cm did not induce release of QDs from the polymersomes, but accelerated the release of Brij-treated FITC-dextran10,000 B from the polymer matrix. High-voltage pulses (over 750 V/cm) induced also fragmentation or aggregation of the nanoparticles. QD_labeled polymersomes penetrated passively in cancer cells after 24-hour incubation. CONCLUSION: The results suggest that QD-labeled polymersomes are appropriate fluorescent probes and a nano-drug delivery system with high tracing opportunities for in vitro and in vivo applications. Furthermore, loading polymersomes with organic dyes with different molecular weights (such as FITC-dextrans) is a simple model for visualizing and predicting the rate of release of small organic molecules (e.g. conventional drugs, other contrasts, stabilizers, and supplements) from the polymer matrix.


Asunto(s)
Medios de Contraste/administración & dosificación , Medios de Contraste/química , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/química , Puntos Cuánticos/administración & dosificación , Puntos Cuánticos/química , Quitosano/administración & dosificación , Quitosano/química , Medios de Contraste/farmacocinética , Dextranos/administración & dosificación , Dextranos/química , Sistemas de Liberación de Medicamentos , Fluoresceína-5-Isotiocianato/administración & dosificación , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Células HeLa , Humanos , Microscopía Confocal , Nanopartículas/administración & dosificación , Nanopartículas/química
6.
Biotechnol Biotechnol Equip ; 29(1): 175-180, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-26019630

RESUMEN

The present study was designed to investigate whether poly-ion complex hollow vesicles (polymersomes), based on chemically modified chitosan, are appropriate for passive tumour targeting in the context of their application as drug carriers. The experiments were performed on colon cancer-grafted mice. The mice were subjected to anaesthesia and injected intravenously with water-soluble nanoparticles: (1) QD705-labelled polymersomes (average size ∼120 nm; size distribution ∼10%) or (2) native QD705. The optical imaging was carried out on Maestro EX 2.10 In Vivo Imaging System (excitation filter 435-480 nm; emission filter 700 nm, longpass). In the case of QD705, the fluorescence appeared in the tumour area within 1 min after injection and disappeared completely within 60 min. A strong fluorescent signal was detected in the liver on the 30th minute. The visualization of tumour using QD705 was based only on angiogenesis. In the case of QD705-labelled polymersomes, the fluorescence appeared in the tumour area immediately after injection with excellent visualization of blood vessels in the whole body. A strong fluorescent signal was detected in the tumour area within 16 hours. This indicated that QD705-labelled polymersomes were delivered predominantly into the tumour due to their long circulation in the bloodstream and enhanced permeability and retention effect. A very weak fluorescent signal was found in the liver area. The data suggest that size-controlled long-circulating polymersomes are very promising carriers for drug delivery in solid tumours, including delivery of small nanoparticles and contrast substances.

7.
Inorg Chem ; 46(16): 6212-4, 2007 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-17602608

RESUMEN

The present study describes a simultaneous and highly reproducible large-scale synthesis of six (and more) colors of size-homogeneous and highly luminescent CdSe quantum dots in a single reaction, controlled by a slow-increasing temperature gradient. The described protocol allows a precise control and a synchronized isolation of aliquots of CdSe nanocrystals with defined sizes, avoiding disturbance of the growth of nanocrystals (existing in the reaction mixture) to the isolation of the next aliquot. The obtained quantum dot fractions are of high quality (in 95% size-homogeneous) and have sharp photoluminescence spectra (fwhm approximately 30 nm), quantum yields of 45-70% (in organic solvent), and a lack of aggregation in organic solvents. The method is environmentally friendly as it ensures almost complete utilization of the precursors and productive yield approximately 95%.


Asunto(s)
Compuestos de Cadmio/química , Química Inorgánica/métodos , Nanopartículas del Metal/química , Puntos Cuánticos , Compuestos de Selenio/química , Cristalización , Microscopía Electrónica de Transmisión , Nanopartículas , Solventes/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA