Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(6): 3985-3995, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38288148

RESUMEN

A systematic investigation was conducted in the present study to determine how various cations and anions affected the solubility of CO2. To investigate the influence of different cations and anions on the solubility of CO2, twelve ILs were synthesized, characterized, and utilized. These ILs comprised five distinct anions (dioctylsulfosuccinate [DOSS], triflouromethanesulfonate [TFMS], dodecylsulfate [DDS], 3-sulfobezoate [SBA], and benzene sulfonate [BS]), and four distinct cations (1-butyl-3-propanenitrile imidazolium [C2CN Bim], 1-hexyl-3-propanenitrile imidazolium [C2CN Him], 1-octyl-3-propanenitrile imidazolium [C2CN Oim], and 1-decyl-3-propanenitrile imidazolium [C2CN Dim]). The synthesized ILs were characterized using NMR and elemental analysis. Their moisture and halide contents were determined. The gravimetric method (MSB) was employed to determine the solubility of CO2 at various pressures (20, 15, 10, 5, and 1 bar). In addition, the effects of temperature on the solubility of CO2 were investigated. The constant of Henry's law (kH) was also calculated, along with thermodynamic properties including standard enthalpy (H0), entropy (S0), and Gibbs free energy (G0).

2.
J Chem Phys ; 160(4)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38284656

RESUMEN

Lithium bis(fluorosulfonyl)imide (Li-TFSI) is an efficient p-dopant that has been used to enhance the conductivity of perovskite solar cells (PSCs). However, the performance of the corresponding devices is still not satisfactory due to the impact of Li-TFSI on the fill factor and the short-circuit current density of these PSCs. Herein, a new Mn complex [(Mn(Me-tpen)(ClO4)2-)]2+ was introduced as a p-type dopant into spiro-OMeTAD and was successfully applied as a hole transport material (HTM) for PSCs. Analytical studies used for device characterization included scanning electron microscopy, UV-Vis spectroscopy, current-voltage (IV) characteristics, incident photon to current efficiency, power conversion efficiency (PCE), and electrochemical impedance spectroscopy. The UV-Vis spectra displayed oxidation in the HTM by the addition of a dopant. Moreover, the movement of electrons from the higher orbital of the spiro-OMeTAD to the dopant stimulates the generation of the hole carriers in the HTM, enhancing its conductivity with outstanding long-term stability under mild conditions in a humid (RH ∼ 30%) environment. The incorporation of the Mn complex into the composite improved the material's properties and the stability of the fabricated devices. The Mn complex as a p-type dopant for spiro-OMeTAD exhibits a perceptible PCE of 16.39% with an enhanced conductivity of 98.13%. This finding may pave a rational way for developing efficient and stable PSCs in real environments.

3.
Electrophoresis ; 45(5-6): 400-410, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38100198

RESUMEN

The coupling of capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C4 D) has become convenient analytical method for determination of small molecules that do not possess chromogenic or fluorogenic group. The implementations of CE with C4 D in the determination of inorganic and organic ions and amino acids in biomedical field are demonstrated. Attention on background electrolyte composition, sample treatment procedures, and the utilize of multi-detection systems are described. A number of tables summarizing highly developed CE-C4 D methods and the figures of merit attained are involved. Lastly, concluding remarks and perspectives are argued.


Asunto(s)
Aminoácidos , Electroforesis Capilar , Electroforesis Capilar/métodos , Conductividad Eléctrica , Iones/análisis , Aminoácidos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA