Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 126(2): 020402, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33512179

RESUMEN

We study the dissipative preparation of many-body entangled Gaussian states in bosonic lattice models which could be relevant for quantum technology applications. We assume minimal resources, represented by systems described by particle-conserving quadratic Hamiltonians, with a single localized squeezed reservoir. We show that in this way it is possible to prepare, in the steady state, the wide class of pure states which can be generated by applying a generic passive Gaussian transformation on a set of equally squeezed modes. This includes nontrivial multipartite entangled states such as cluster states suitable for measurement-based quantum computation.

2.
Opt Express ; 27(22): 32427-32444, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31684456

RESUMEN

We analyze the performance of optomechanical cooling of a mechanical resonator in the presence of a degenerate optical parametric amplifier within the optomechanical cavity, which squeezes the cavity light. We demonstrate that this allows to significantly enhance the cooling efficiency via the coherent suppression of Stokes scattering. The enhanced cooling occurs also far from the resolved sideband regime, and we show that this cooling scheme can be more efficient than schemes realized by injecting a squeezed field into the optomechanical cavity.

3.
Phys Rev Lett ; 120(7): 073601, 2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29542974

RESUMEN

Normal-mode splitting is the most evident signature of strong coupling between two interacting subsystems. It occurs when two subsystems exchange energy between themselves faster than they dissipate it to the environment. Here we experimentally show that a weakly coupled optomechanical system at room temperature can manifest normal-mode splitting when the pump field fluctuations are antisquashed by a phase-sensitive feedback loop operating close to its instability threshold. Under these conditions the optical cavity exhibits an effectively reduced decay rate, so that the system is effectively promoted to the strong coupling regime.

4.
Phys Rev Lett ; 119(12): 123603, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-29341637

RESUMEN

We realize a phase-sensitive closed-loop control scheme to engineer the fluctuations of the pump field which drives an optomechanical system and show that the corresponding cooling dynamics can be significantly improved. In particular, operating in the counterintuitive "antisquashing" regime of positive feedback and increased field fluctuations, sideband cooling of a nanomechanical membrane within an optical cavity can be improved by 7.5 dB with respect to the case without feedback. Close to the quantum regime of reduced thermal noise, such feedback-controlled light would allow going well below the quantum backaction cooling limit.

5.
Phys Rev Lett ; 102(9): 096804, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19392550

RESUMEN

We present a quantum theory of cooling of a mechanical resonator using back action with a constant electron current. The resonator device is based on a doubly clamped nanotube, which mechanically vibrates and acts as a double quantum dot for electron transport. Mechanical vibrations and electrons are coupled electrostatically using an external gate. The fundamental eigenmode is cooled by absorbing phonons when electrons tunnel through the double quantum dot. We identify the regimes in which ground-state cooling can be achieved for realistic experimental parameters.

6.
Phys Rev Lett ; 95(14): 143001, 2005 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-16241649

RESUMEN

We derive an equation for the cooling dynamics of the quantum motion of an atom trapped by an external potential inside an optical resonator. This equation has broad validity and allows us to identify novel regimes where the motion can be efficiently cooled to the potential ground state. Our result shows that the motion is critically affected by quantum correlations induced by the mechanical coupling with the resonator, which may lead to selective suppression of certain transitions for the appropriate parameters regimes, thereby increasing the cooling efficiency.

7.
Phys Rev Lett ; 93(12): 123002, 2004 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-15447259

RESUMEN

When N driven atoms emit in phase into a high-Q cavity mode, the intracavity field generated by collective scattering interferes destructively with the pump driving the atoms. Hence atomic fluorescence is suppressed and cavity loss becomes the dominant decay channel for the whole ensemble. Microscopically, 3D light-intensity minima are formed in the vicinity of the atoms that prevent atomic excitation and form a regular lattice. The effect gets more pronounced for large atom numbers, when the sum of the atomic decay rates exceeds the rate of cavity losses and one would expect the opposite behavior. These results provide new insight into recent experiments on collective atomic dynamics in cavities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA