Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 135(11): 3709-3734, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35665827

RESUMEN

Crown rust, caused by Puccinia coronata f. sp. avenae (Pca), is a significant impediment to global oat production. Some 98 alleles at 92 loci conferring resistance to Pca in Avena have been designated; however, allelic relationships and chromosomal locations of many of these are unknown. Long-term monitoring of Pca in Australia, North America and elsewhere has shown that it is highly variable even in the absence of sexual recombination, likely due to large pathogen populations that cycle between wild oat communities and oat crops. Efforts to develop cultivars with genetic resistance to Pca began in the 1950s. Based almost solely on all all-stage resistance, this has had temporary benefits but very limited success. The inability to eradicate wild oats, and their common occurrence in many oat growing regions, means that future strategies to control Pca must be based on the assumption of a large and variable prevailing pathogen population with high evolutionary potential, even if cultivars with durable resistance are deployed and grown widely. The presence of minor gene, additive APR to Pca in hexaploid oat germplasm opens the possibility of pyramiding several such genes to give high levels of resistance. The recent availability of reference genomes for diploid and hexaploid oat will undoubtedly accelerate efforts to discover, characterise and develop high throughput diagnostic markers to introgress and pyramid resistance to Pca in high yielding adapted oat germplasm.


Asunto(s)
Avena , Avena/genética , Australia
2.
Theor Appl Genet ; 130(11): 2463-2477, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28836114

RESUMEN

KEY MESSAGE: Genome-wide association studies of barley breeding populations identified candidate minor genes for pairing with the adult plant resistance gene Rph20 to provide stable leaf rust resistance across environments. Stable resistance to barley leaf rust (BLR, caused by Puccinia hordei) was evaluated across environments in barley breeding populations (BPs). To identify genomic regions that can be combined with Rph20 to improve adult plant resistance (APR), two BPs genotyped with the Diversity Arrays Technology genotyping-by-sequencing platform (DArT-seq) were examined for reaction to BLR at both seedling and adult growth stages in Australian environments. An integrated consensus map comprising both first- and second-generation DArT platforms was used to integrate QTL information across two additional BPs, providing a total of four interrelated BPs and 15 phenotypic data sets. This enabled identification of key loci underpinning BLR resistance. The APR gene Rph20 was the only active resistance region consistently detected across BPs. Of the QTL identified, RphQ27 on chromosome 6HL was considered the best candidate for pairing with Rph20. RphQ27 did not align or share proximity with known genes and was detected in three of the four BPs. The combination of RphQ27 and Rph20 was of low frequency in the breeding material; however, strong resistance responses were observed for the lines carrying this pairing. This suggests that the candidate minor gene RphQ27 can interact additively with Rph20 to provide stable resistance to BLR across diverse environments.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad/genética , Hordeum/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Australia , Mapeo Cromosómico , Ambiente , Genes de Plantas , Estudios de Asociación Genética , Marcadores Genéticos , Técnicas de Genotipaje , Hordeum/microbiología , Desequilibrio de Ligamiento , Fenotipo , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo
3.
Theor Appl Genet ; 127(5): 1199-212, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24626954

RESUMEN

KEY MESSAGE: "To find stable resistance using association mapping tools, QTL with major and minor effects on leaf rust reactions were identified in barley breeding lines by assessing seedlings and adult plants." Three hundred and sixty (360) elite barley (Hordeum vulgare L.) breeding lines from the Northern Region Barley Breeding Program in Australia were genotyped with 3,244 polymorphic diversity arrays technology markers and the results used to map quantitative trait loci (QTL) conferring a reaction to leaf rust (Puccinia hordei Otth). The F3:5 (Stage 2) lines were derived or sourced from different geographic origins or hubs of international barley breeding ventures representing two breeding cycles (2009 and 2011 trials) and were evaluated across eight environments for infection type at both seedling and adult plant stages. Association mapping was performed using mean scores for disease reaction, accounting for family effects using the eigenvalues from a matrix of genotype correlations. In this study, 15 QTL were detected; 5 QTL co-located with catalogued leaf rust resistance genes (Rph1, Rph3/19, Rph8/14/15, Rph20, Rph21), 6 QTL aligned with previously reported genomic regions and 4 QTL (3 on chromosome 1H and 1 on 7H) were novel. The adult plant resistance gene Rph20 was identified across the majority of environments and pathotypes. The QTL detected in this study offer opportunities for breeding for more durable resistance to leaf rust through pyramiding multiple genomic regions via marker-assisted selection.


Asunto(s)
Basidiomycota , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo , Australia , Cruzamiento , Mapeo Cromosómico , Estudios de Asociación Genética , Genotipo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA