Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 31(13): 3889-96, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25768113

RESUMEN

We report on the effect of the deposition technique on film layering, stability, and chain mobility in weak polyelectrolyte layer-by-layer (LbL) films. Ellipsometry and neutron reflectometry (NR) showed that shear forces arising during spin-assisted assembly lead to smaller amounts of adsorbed polyelectrolytes within LbL films, result in a higher degree of internal film order, and dramatically improve stability of assemblies in salt solutions as compared to dip-assisted LbL assemblies. The underlying flattening of polyelectrolyte chains in spin-assisted LbL films was also revealed as an increase in ionization degree of the assembled weak polyelectrolytes. As demonstrated by fluorescence recovery after photobleaching (FRAP), strong binding between spin-deposited polyelectrolytes results in a significant slowdown of chain diffusion in salt solutions as compared to dip-deposited films. Moreover, salt-induced chain intermixing in the direction perpendicular to the substrate is largely inhibited in spin-deposited films, resulting in only subdiffusional (<2 Å) chain displacements even after 200 h exposure to 1 M NaCl solutions. This persistence of polyelectrolyte layering has important ramifications for multistage drug delivery and optical applications of LbL assemblies.

2.
ACS Macro Lett ; 2(10): 865-868, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35607005

RESUMEN

Fluorescence recovery after photobleaching has been applied to determine, to our knowledge for the first time, the molecular weight (Mw) dependence of lateral diffusion of polymer chains within layer-by-layer (LbL) films. As shown by neutron reflectometry, polyelectrolyte multilayers containing polymethacrylic acid (PMAA, Mw/Mn < 1.05) of various molecular weights assembled from solutions of low ionic strengths at pH 4.5, where film growth was linear, showed similar diffusion of PMAA in the direction perpendicular to the film surface. At a salt concentration sufficient for unfreezing electrostatically bonded chains, layer intermixing remained almost unaffected (changes <1.0 nm), while the lateral diffusion coefficient (D) scaled with the PMAA molecular weight as D ∼ Mw-1±0.05.

3.
ACS Nano ; 5(11): 8790-9, 2011 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-21958457

RESUMEN

We report on polymer/clay layer-by-layer films responsive to multiple stimuli. Temperature- and salt-responsive films were constructed using assembly of poly(N-isopropylacrylamide) (PNIPAM) and montmorillonite clay nanosheets. An additional pH response was achieved by depositing and cross-linking hybrid, dual-network PNIPAM/clay/PNIPAM/poly(methacrylic acid) (PMAA) multilayers. Both types of films remained stable in a wide pH range and were highly swollen. For example, PNIPAM/clay films swelled up to ~14.5 times their dry film thickness in low-salt solutions at 25 °C, as shown by laser scanning confocal microscopy. At temperatures higher than PNIPAM's lower critical solution temperature (LCST) of 32 °C, or in 0.3 M Na(2)SO(4) solutions at room temperature, both PNIPAM/clay and PNIPAM/clay/PNIPAM/PMAA films reversibly deswelled as a result of collapse of PNIPAM chains. Films of both types showed a decrease in permeability to fluorescein-tagged dextrans of various molecular weights. Importantly, film permeability to dextrans was decreased at temperatures above PNIPAM's LCST, and the effect could be reversed by lowering the temperature. Inclusion of PMAA within multilayers provided an additional pH response to film swelling and permeability. Hybrid PNIPAM/clay/PNIPAM/PMAA films showed drastic deswelling at low pH values due to the onset of hydrogen bonding between PNIPAM and PMAA, and the diffusion of 70 kDa dextran through multilayers at acidic pH was completely blocked. These multiresponse features of clay-containing films make them promising candidates for applications in sensing, actuation, and controlled delivery.


Asunto(s)
Silicatos de Aluminio/química , Nanotecnología/métodos , Resinas Acrílicas/química , Arcilla , Concentración de Iones de Hidrógeno , Peso Molecular , Permeabilidad , Sales (Química)/química , Temperatura , Agua/química
4.
J Colloid Interface Sci ; 355(1): 61-9, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21194703

RESUMEN

We report on construction of hydrogen-bonded monolayers and multilayers of micelles of the poly(2-(diethylamino)ethyl methacrylate)-block-poly(N-isopropyl acrylamide) (PDEA-b-PNIPAM) with PNIPAM-corona and polybasic PDEA cores. Films were constructed at pH 7.5 and 25°C to assure the deposition of PDEA-b-PNIPAM in the micellar form. When monolayers of block copolymer micelles (BCMs) were exposed to moderately acidic pH values, micellar cores dissolved, while PDEA-b-PNIPAM remained adsorbed at the surface as unimers. In contrast to reversible micellization of PDEA-b-PNIPAM in solution, micelle-to-unimer transition was irreversible at the surface. Adsorption of a layer of tannic acid (TA) or polyethacrylic acid (PEAA) on top of BCM monolayers inhibited pH-triggered morphological changes within adsorbed BCMs. By taking advantage of the high pK(a) values of TA and PEAA, we were also able to construct multilayers of PDEA-b-PNIPAM micelles through hydrogen bonding interactions between micellar PNIPAM coronas and TA or PEAA. Similar to BCM monolayers coated with TA or PEAA, dissolution of BCMs was also inhibited when incorporated within hydrogen-bonded multilayers. Such inhibition of dissolution is due to enhanced hydrogen bonding interactions between coronal PNIPAM chains and protonated TA molecules or PEAA chains at decreasing pH values restricting the pH-induced conformational changes of the micellar core chains within the adsorbed layer. Films of responsive BCMs are attractive coatings for controlled delivery of functional molecules from surfaces due to a combination of stimuli-response properties with the relatively high loading capacity for functional molecules.

5.
Langmuir ; 25(24): 14025-9, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19572503

RESUMEN

A hydrogen-bonded layer-by-layer (LbL) technique was used to build multilayers of neutral, temperature-responsive polymers such as poly(N-isopropylacrylamide) (PNIPAM), poly(N-vinylcaprolactam) (PVCL), poly(vinyl methyl ether) (PVME), or poly(acrylamide) (PAAm) with a polycarboxylic acid such as poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), or poly(ethacrylic acid) (PEAA). For all multilayers involving temperature-responsive polymers, the temperature used during or after self-assembly had a significant effect on film stability with pH changes. The proximity of the self-assembly or post-self-assembly temperature to the critical temperature of phase separation of a neutral polymer from solution resulted in a higher pH stability of multilayers. However, for polymers with a lower critical solution temperature (LCST) such as PNIPAM, PVCL, or PVME within PNIPAM/PMAA, PVCL/PMAA, or PVME/PMAA multilayers, the critical pH of film disintegration (pH(crit)) increased in the temperature range from 10 to 37 degrees C, whereas for polymer films with an upper critical solution temperature (UCST), such as PAAm within PAAm/PMAA, the film showed the opposite trend. Using a hydrogen-bonded polyvinylpyrrolidone (PVPON)/PMAA system, which is not responsive to temperature changes, we constructed hybrid films with lower [PNIPAM/PMAA](n) and higher [PVPON/PMAA](m) strata and obtained free-floating [PVPON/PMAA](m) films by temperature-triggered dissolution of the PNIPAM/PMAA layers at a constant pH value. The kinetics of [PVPON/PMAA](m) film release was strongly dependent on the number of bilayers within the PNIPAM/PMAA stratum, indicating significant interpenetration between PNIPAM/PMAA and PVPON/PMAA bilayers. Importantly, the use of PEAA instead of PAA or PMAA in film assembly enabled the construction of hydrogen-bonded LbL films that can be released by applying temperature as a trigger at near-physiological pH values. This feature makes such release layers attractive candidates for future tissue engineering applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA