Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Plant Physiol ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276364

RESUMEN

In agronomically important C4 grasses, efficient CO2 delivery to Rubisco is facilitated by NADP-malic enzyme (C4NADP-ME), which decarboxylates malate in bundle sheath cells. However, understanding the molecular regulation of the C4NADP-ME gene in sugarcane (Saccharum spp.) is hindered by its complex genetic background. Enzymatic activity assays demonstrated that decarboxylation in sugarcane Saccharum spontaneum predominantly relies on the NADP-ME pathway, similar to sorghum (Sorghum bicolor) and maize (Zea mays). Comparative genomics analysis revealed the recruitment of eight core C4 shuttle genes, including C4NADP-ME (SsC4NADP-ME2), in the C4 pathway of sugarcane. Contrasting to sorghum and maize, the expression of SsC4NADP-ME2 in sugarcane is regulated by different transcription factors (TFs). We propose a gene regulatory network for SsC4NADP-ME2, involving candidate TFs identified through gene co-expression analysis and yeast one-hybrid experiment. Among these, ABA INSENSITIVE5 (ABI5) was validated as the predominant regulator of SsC4NADP-ME2 expression, binding to a G-box within its promoter region. Interestingly, the core element ACGT within the regulatory G-box was conserved in sugarcane, sorghum, maize, and rice (Oryza sativa), suggesting an ancient regulatory code utilized in C4 photosynthesis. This study offers insights into SsC4NADP-ME2 regulation, crucial for optimizing sugarcane as a bioenergy crop.

2.
Angew Chem Int Ed Engl ; : e202410710, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949854

RESUMEN

Metallo-supramolecular cages have garnered tremendous attention for their diverse yet molecular-level precision structures. However, the physical properties of these supramolecular ensembles, which are of potential significance in molecular electronics, remain largely unexplored. We herein constructed a series of octahedral metallo-cages and cage-fullerene complexes with notably enhanced structural stability. As such, we could systematically evaluate the electrical conductivity of these ensembles at both the single-molecule level and aggregated bulk state (as well-defined films). Our findings reveal that counteranions and fullerene guests play a pivotal role in determining the electrical conductivity of the aggregated state, while such effects are less significant for single-molecule conductance. Both the counteranions and fullerenes effectively tune the electronic structures and packing density of metallo-supramolecular assemblies, and facilitate efficient charge transfer between the cage hosts and fullerenes, resulting in a notable one order of magnitude increase in the electrical conductivity of the aggregated state.

3.
Org Lett ; 26(27): 5635-5639, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38958212

RESUMEN

The chemical modification of the achiral carbon nanohoops to break the symmetry will result in inherently chiral structures with interesting optical properties. Herein, we report two novel π-extended chiral macrocycles, cyclo[10]paraphenylene-pyrene ([10]CPP-2Pyrene) and cyclo[10]paraphenylene-hexa-peri-hexabenzocoronene ([10]CPP-2HBC). The large substituents on the nanohoop peripheries effectively prevented free rotation and the racemization process. The conformation of each enantiomer is stable enough to be resolved by recycling HPLC.

4.
Angew Chem Int Ed Engl ; : e202410414, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924578

RESUMEN

A series of TADF-active compounds: 0D chiral Ln-Ag(I) clusters L-/D-Ln2Ag28-0D (Ln=Eu/Gd) and 2D chiral Ln-Ag(I) cluster-based frameworks L-/D-Ln2Ag28-2D (Ln=Gd) has been synthesized. Atomic-level structural analysis showed that the chiral Ag(I) cluster units {Ag14S12} in L-/D-Ln2Ag28-0D and L-/D-Ln2Ag28-2D exhibited similar configurations, linked by varying numbers of [Ln(H2O)x]3+ (x=6 for 0D, x=3 for 2D) to form the final target compounds. Temperature-dependent emission spectra and decay lifetimes measurement demonstrated the presence of TADF in L-Ln2Ag28-0D (Ln=Eu/Gd) and L-Gd2Ag28-2D. Experimentally, the remarkable TADF properties primarily originated from {Ag14S12} moieties in these compounds. Notably, {Ag14S12} in L-Eu2Ag28-0D and L-Gd2Ag28-2D displayed higher promote fluorescence rate and shorter TADF decay times than L-Gd2Ag28-0D. Combined with theoretical calculations, it was determined that the TADF behaviors of {Ag14S12} cluster units were induced by 4 f perturbation of Ln3+ ions. Specially, while maintaining ΔE(S1-T1) small enough, it can significantly increase k(S1→S0) and reduce TADF decay time by adjusting the type or number of Ln3+ ions, thus achieving the purpose of improving TADF for cluster-based luminescent materials.

5.
J Chem Phys ; 160(22)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38856683

RESUMEN

Magnetic property (e.g. spin order) of support is of great importance in the rational design of heterogeneous catalysts. Herein, we have taken the Ni-supported ferromagnetic (FM) CrBr3 support (Nix/CrBr3) to thoroughly investigate the effect of spin-order on electrocatalytic oxygen reduction reaction (ORR) via spin-polarized density functional theory calculations. Specifically, Ni loading induces anti-FM coupling in Ni-Cr, leading to a transition from FM-to-ferrimagnetic (FIM) properties, while Ni-Ni metallic bonds create a robust FM direct exchange, benefiting the improvement of the phase transition temperature. Interestingly, with the increase in Ni loading, the easy magnetic axis changes from out-of-plane (2D-Heisenberg) to in-plane (2D-XY). The adsorption properties of Nix/CrBr3, involving O2 adsorption energy and configuration, are not governed by the d-band center but strongly correlate with magnetic anisotropy. It is noteworthy that the applied potential and electrolyte acidity triggers spin-order transition phenomena during the ORR and induces the catalytic pathway change from 4e- ORR to 2e- ORR with the excellent onset potential of 0.93 V/reversible hydrogen electrode, comparable to the existing most excellent noble-metal catalysts. Generally, these findings offer new avenues to understand and design heterogeneous catalysts with magnetic support.

6.
ACS Appl Mater Interfaces ; 16(25): 32394-32401, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38875495

RESUMEN

Adiabatic demagnetization refrigeration is known to be the only cryogenic refrigeration technology that can achieve ultralow temperatures (≪1 K) at gravity-free conditions. The key indexes to evaluate the performance of magnetic refrigerants are their magnetic entropy changes (-ΔSm) and magnetic ordering temperature (T0). Although, based on the factors affecting the -ΔSm of magnetic refrigerants, one has been able to judge if a magnetic refrigerant has a large -ΔSm, how to accurately predict their T0 remains a huge challenge due to the fact that the T0 of magnetic refrigerants is related to not only magnetic exchange but also single-ion anisotropy and magnetic dipole interaction. Here, we, taking GdCO3F (1), Gd(HCOO)F2, Gd2(SO4)3·8H2O, GdF3, Gd(HCOO)3 and Gd(OH)3 as examples, demonstrate that the T0 of magnetic refrigerants with very weak magnetic interactions and small anisotropy can be accurately predicted by integrating mean-field approximation with quantum Monte Carlo simulations, providing an effective method for predicting the T0 of ultralow-temperature magnetic refrigerants. Thus, the present work lays a solid foundation for the rational design and preparation of ultralow-temperature magnetic refrigerants in the future.

7.
Pediatr Infect Dis J ; 43(8): 736-742, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717173

RESUMEN

BACKGROUND: Early identification of high-risk groups of children with sepsis is beneficial to reduce sepsis mortality. This article used artificial intelligence (AI) technology to predict the risk of death effectively and quickly in children with sepsis in the pediatric intensive care unit (PICU). STUDY DESIGN: This retrospective observational study was conducted in the PICUs of the First Affiliated Hospital of Sun Yat-sen University from December 2016 to June 2019 and Shenzhen Children's Hospital from January 2019 to July 2020. The children were divided into a death group and a survival group. Different machine language (ML) models were used to predict the risk of death in children with sepsis. RESULTS: A total of 671 children with sepsis were enrolled. The accuracy (ACC) of the artificial neural network model was better than that of support vector machine, logical regression analysis, Bayesian, K nearest neighbor method and decision tree models, with a training set ACC of 0.99 and a test set ACC of 0.96. CONCLUSIONS: The AI model can be used to predict the risk of death due to sepsis in children in the PICU, and the artificial neural network model is better than other AI models in predicting mortality risk.


Asunto(s)
Inteligencia Artificial , Unidades de Cuidado Intensivo Pediátrico , Sepsis , Humanos , Sepsis/mortalidad , Estudios Retrospectivos , Masculino , Preescolar , Femenino , Lactante , Niño , Unidades de Cuidado Intensivo Pediátrico/estadística & datos numéricos , Redes Neurales de la Computación , Máquina de Vectores de Soporte , Recién Nacido , Adolescente
8.
J Phys Chem Lett ; 15(22): 5887-5895, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38804881

RESUMEN

Herein, we theoretically investigate the effect of magnetic orders on electrocatalytic oxygen reduction reaction (ORR) properties on the Fe-N4 site-embedded two-dimensional (2D) covalent organic framework (Fe-N4@COF-C3N2) under realistic environments. The Fe-N4@COF-C3N2 shows a 2D square-lattice (sql) topology with three magnetic order states: one ferromagnetic state (FM) and two antiferromagnetic states (AFM1 and AFM2). Specially, the electrocatalyst in the AFM2 state shows a remarkable onset potential of 0.80 V/reversible hydrogen electrode (RHE) at pH 1, superior to the existing most excellent noble-metal catalysts. Thermodynamically, the onset potential for the 4e- ORR is 0.64 V/RHE at pH 1, with a magnetic state transition process of FM → AFM1 → FM → FM → FM, while at pH 13, the onset potential for the 4e- ORR is 0.54 V/RHE, with the magnetic transition process of FM → FM → AFM1 → FM → FM. Generally, this finding will provide new avenues to rationally design the Fe-N4 electrocatalyst.

9.
Small ; 20(32): e2401044, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38516941

RESUMEN

Atomically precise metal clusters serve as a unique model for unraveling the intricate mechanism of the catalytic reaction and exploring the complex relationship between structure and activity. Herein, three series of water-soluble heterometallic clusters LnCu6, abbreviated as LnCu6-AC (Ln = La, Nd, Gd, Er, Yb; HAC = acetic acid), LnCu6-IM (Ln = La and Nd; IM = Imidazole), and LnCu6-IDA (Ln = Nd; H2IDA = Iminodiacetic acid) are presented, each featuring a uniform metallic core stabilized by distinct protected ligands. Crystal structure analysis reveals a triangular prism topology formed by six Cu2+ ions around one Ln3+ ion in LnCu6, with variations in Cu···Cu distances attributed to different ligands. Electrocatalytic oxygen evolution reaction (OER) shows that these different LnCu6 clusters exhibit different OER activities with remarkable turnover frequency of 135 s-1 for NdCu6-AC, 79 s-1 for NdCu6-IM and 32 s-1 for NdCu6-IDA. Structural analysis and Density Functional Theory (DFT) calculations underscore the correlation between shorter Cu···Cu distances and improves OER catalytic activity, emphasizing the pivotal role of active-site distance in regulating electrocatalytic OER activities. These results provide valuable insights into the OER mechanism and contribute to the design of efficient homogeneous OER electrocatalysts.

10.
J Phys Chem Lett ; 14(50): 11447-11456, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38085811

RESUMEN

Herein, combining density functional theory (DFT) calculations with nonadiabatic molecular dynamics (NAMD), we built a computational framework to rationally screen from a series of 2D conjugated carbon nitrides (CNs) to match with B4C3, resulting in the excellent direct Z-scheme photocatalyst (B4C3/C6N6) for overall water splitting (OWS). Studies on interface engineering and ultrafast dynamics of carrier recombination-transfer show that in the B4C3/C6N6 system, compared with the slower interlayer migration process of carriers, strong nonadiabatic coupling and longer quantum decoherence time accelerates weak carrier interlayer recombination on a subpicosecond time scale, enabling simultaneous triggering of hydrogen evolution reaction (HER) with ΔG = -0.23 eV and spontaneous oxygen evolution reaction (OER) in the absence of sacrificial or cocatalysts. In general, our work will promote the design of efficient direct Z-scheme photocatalysts from an ultrafast dynamics perspective.

11.
J Am Chem Soc ; 145(31): 16983-16987, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37505903

RESUMEN

Electrically conductive metal-organic frameworks (MOFs) have been extensively studied for their potential uses in energy-related technologies and sensors. However, achieving that goal requires MOFs to be highly stable and maintain their conductivity under practical operating conditions with varying solution environments and temperatures. Herein, we have designed and synthesized a new series of {[Ln4(µ4-O)(µ3-OH)3(INA)3(GA)3](CF3SO3)(H2O)6}n (denoted as Ln4-MOFs, Ln = Gd, Tm, and Lu, INA = isonicotinic acid, GA = glycolic acid) single crystals, where electrons are found to transport along the π-π stacked aromatic carbon rings in the crystals. The Ln4-MOFs show remarkable stability, with minimal changes in conductivity under varying solution pH (1-12), temperature (373 K), and electric field as high as 800 000 V/m. This stability is achieved through the formation of strong coordination bonds between high-valent Ln(III) ions and rigid carboxylic linkers as well as hydrogen bonds that enhance the robustness of the electron transport path. The demonstrated lanthanide MOFs pave the way for the design of stable and conductive MOFs.

12.
Phys Chem Chem Phys ; 25(16): 11673-11683, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37051874

RESUMEN

The rational design of high-performance catalysts for oxygen reduction reactions (ORRs) is of great importance for large-scale applications in the field of proton-exchange membrane fuel cells and the green synthesis of H2O2. The effect of spin states of paramagnetic metal ions on the selectivity of ORRs is significant for single-atom catalysts (SACs). In this work, via spin-polarization density functional theory (DFT) calculations, we systematically investigated the popular paramagnetic metal-nitrogen graphene (M-N4-C, M = Mn, Fe, and Co) SACs to mainly focus on the correlation of spin states and catalytic performance (e.g. activity and selectivity). Both thermodynamically and kinetically, it was found that Co-N4-C (S = 1/2) has excellent 2e- oxygen reduction performance (hydrogen peroxide production) with an ultralow overpotential of 0.03 V, and the hydrogenation of OOH* is the rate-determining step (RDS) with an energy barrier of 1.20 eV. The 4e- ORR tends to occur along the OOH dissociation pathway (O* + OH*) on Co-N4-C (S = 3/2), in which OOH* decomposition is the RDS with an energy barrier of 1.01 eV. It is proved that the spin magnetic moment is the key factor to regulate the ORR property via multi-angle electronic analysis. The spin states of catalysts play a crucial role in the activity and selectivity of ORRs mainly by manipulating the bond strength between OOH and catalysts. This will provide new insights for the rational design of ORR catalysts with magnetic metals.

13.
J Clin Med ; 12(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36983228

RESUMEN

BACKGROUND: Extensive knowledge of allergic multimorbidities is required to improve the management of allergic diseases with the industrialization of China. However, the demography and allergen distribution patterns of allergic multimorbidities in China remain unclear, despite the increasing prevalence of allergies. METHODS: This was a real-world, cross-sectional study of 1273 outpatients diagnosed with one or more allergic diseases in Guangzhou, the most populated city of southern China, with leading industrial and commercial centers, between April 2021 and March 2022. Seven allergic diseases (allergic rhinitis (AR), asthma (AS)/cough variant asthma (CVA), atopic dermatitis (AD)/eczema, food allergy (FA), allergic conjunctivitis (AC), drug allergy (DA), and anaphylaxis) were assessed. Positive rates of sensitization to different allergens were measured using an allergen detection system of the UniCAP (Pharmacia Diagnostics, Sweden) instrument platform to compare the groups of allergic multimorbidities against a single entity. RESULTS: There were 659 (51.8%) males and 614 (48.2%) females aged from 4 months to 74 years included in the analysis. The study participants who were diagnosed with allergic diseases had an average of 1.6 diagnoses. Overall, 46.5% (592 of 1273) of the patients had more than one allergic condition, and allergic rhinitis was the most common type of multimorbidity. Women were more likely to suffer from an allergic disease alone, whereas allergic multimorbidities were more likely to be diagnosed in men (p = 0.005). In addition, allergic multimorbidities were common in all age groups, with an incidence ranging from 37.1% to 57.4%, in which children and adolescents were more frequently diagnosed with allergic multimorbidities than adults (18-60 years old) (all p < 0.05). Allergic multimorbidity was observed throughout the year. A difference in the positive rate of allergens sensitization and total immunoglobulin E (tIgE) levels between different allergic multimorbidities was observed. CONCLUSIONS: Allergic multimorbidities were very commonly found in nearly half of all patients with allergies. The proportion of allergic multimorbidities varied with the type of disease, sex, age, and allergen distribution pattern. These findings may help clinicians to develop "One health" strategies for the clinical management of allergic diseases.

15.
J Colloid Interface Sci ; 640: 67-77, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36841173

RESUMEN

Electrocatalytic N2 reduction reaction (eNRR) was an effective alternative method for green synthesis of NH3. By combining the first-principal Density functional theory (DFT) calculations and Monte Carlo (MC) simulation, we systematacially investigated 24 types equal-ratio bimetallic MXene solid solution, involving 88 different catalysts. Our focus was on the catalytic performance of these materials in eNRR. The computational result indicate that MoW(3Mo) has high stability, selectivity (93.8 % against the hydrogen evolution reaction (HER)) and activity (UL = -0.26 V), which is significantly better than that of monometal Mo2CO2 and W2CO2. This improvement in catalytic properties is attributed to the unique electronic structure (e.g. d-band center, charge) of bimetallic MXene solid solution. In explicit solvent conditions, the microenvironment of hydrogen bond in aqueous liquid thermodynamically promotes the catalytic property for eNRR and reduce the catalytic property of HER side reaction, but the kinetic barrier is also increased due to the effect of the hydrogen-bond microenvironment on proton migration. Overall, the obtained bimetallic MXene solid solution MoW(3Mo) exhibits excellent catalytic performance in eNRR.

16.
Inorg Chem ; 62(1): 266-274, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36548144

RESUMEN

Multifunctional materials with switchable magnetic and dielectric properties are crucial for the development of memory and sensor devices. Herein, we report a methoxy-bridged dinuclear iron-pyridyl complex [Fe2(4-picoline)4(NCS)4(µ-OCH3)2] (1), which shows simultaneous thermal-induced magnetic and dielectric switchings. Within the phase-transition temperature range, both magnetic switching and the dielectric anomaly were detected, in which the thermal hysteresis loops were 23 and 21 K, respectively. Detailed structural analyses revealed that these simultaneous switchings were rooted in the flexible rotatable ligands, which were actuated by readjusting the π-π intermolecular interactions between the pyridine ligands in the trans positions of the metal centers. These results were comprehensively investigated both experimentally and theoretically. This study presents a new guideline to control both the magnetic and dielectric properties of molecular complexes by external stimuli.

17.
Angew Chem Int Ed Engl ; 62(6): e202216592, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36478491

RESUMEN

We explored a co-dissolved strategy to embed mono-dispersed Pt center into V2 O5 support via dissolving [PtV9 O28 ]7- into [V10 O28 ]6- aqueous solution. The uniform dispersion of [PtV9 O28 ]7- in [V10 O28 ]6- solution allows [PtV9 O28 ]7- to be surrounded by [V10 O28 ]6- clusters via a freeze-drying process. The V centers in both [PtV9 O28 ]7- and [V10 O28 ]6- were converted into V2 O5 via a calcination process to stabilize Pt center. These double separations can effectively prevent the Pt center agglomeration during the high-temperature conversion process, and achieve 100 % utilization of Pt in [PtV9 O28 ]7- . The resulting Pt-V2 O5 single-atom-site catalysts exhibit a CH4 yield of 247.6 µmol g-1 h-1 , 25 times higher than that of Pt nanoparticle on the V2 O5 support, which was accompanied by the lactic acid photooxidation to form pyruvic acid. Systematical investigations on this unambiguous structure demonstrate an important role of Pt-O atomic pair synergy for highly efficient CO2 photoreduction.

18.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1045867

RESUMEN

As a recognized rare and highly fatal disease, hereditary angioedema (HAE) is difficult to diagnose and characterized by recurrent edema involving the head, limbs, genitals and larynx, etc. Diagnosis of HAE is not difficult. However, low incidence and lack of clinical characteristics lead to difficulty of doctors on timely diagnosis and correct intervention for HAE patients. Therefore, it is crucial to improve the awareness of this disease and prevent its recurrence. for HAE patients. In view of absent cognition of doctors and the general public on HAE, patients often suffer from sudden death or become disabled due to laryngeal edema which cannot be treated in time. Thus, based on the Internet mobile terminal platform, the team set up an all-day rapid emergency response system which is provided for HAE patients by setting up "one-click help". The aim is to offer optimization on overall management of HAE and designed the intelligent follow-up management to provide timely assistance and specialized suggestion for patients with acute attacks.


Asunto(s)
Humanos , Angioedemas Hereditarios/tratamiento farmacológico
19.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1045965

RESUMEN

Allergic diseases affect about 40% of the world's population. Environmental factors are important in the occurrence and development of allergic diseases. Dust mites are one of the most important allergens in the indoor environment. The World Health Organization proposes the "four-in-one, combination of prevention and treatment" treatment principle for allergic diseases, in which environmental control to avoid or reduce allergens is the first choice for treatment. Modern people spend much more time at home (including sleeping) than outdoors, and the control of the home environment is particularly critical. This practice introduces the hypoallergenic home visit program, which including home environment assessment, environmental and behavioral intervention guidance, and common household hypoallergenic supplies and service guidance for the patient's home environment. The real-time semi-quantitative testing of dust mite allergens, qualitative assessments of other indoor allergens, record of patients' household items and lifestyle, and precise, individualized patient prevention and control education will be conducted. The hypoallergenic home visit program improves the doctors' diagnosis and treatment data dimension, and becomes a patient management tool for doctors outside the hospital. It also helps patients continue to scientifically avoid allergens and irritants in the environment, effectively build a hypoallergenic home environment, reduce exposure to allergens in the home environment, and achieve the goal of combining the prevention and treatment of allergic diseases.


Asunto(s)
Humanos , Hospitales , Estilo de Vida , Sueño
20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1046190

RESUMEN

As a recognized rare and highly fatal disease, hereditary angioedema (HAE) is difficult to diagnose and characterized by recurrent edema involving the head, limbs, genitals and larynx, etc. Diagnosis of HAE is not difficult. However, low incidence and lack of clinical characteristics lead to difficulty of doctors on timely diagnosis and correct intervention for HAE patients. Therefore, it is crucial to improve the awareness of this disease and prevent its recurrence. for HAE patients. In view of absent cognition of doctors and the general public on HAE, patients often suffer from sudden death or become disabled due to laryngeal edema which cannot be treated in time. Thus, based on the Internet mobile terminal platform, the team set up an all-day rapid emergency response system which is provided for HAE patients by setting up "one-click help". The aim is to offer optimization on overall management of HAE and designed the intelligent follow-up management to provide timely assistance and specialized suggestion for patients with acute attacks.


Asunto(s)
Humanos , Angioedemas Hereditarios/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA