Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 472: 134565, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38743974

RESUMEN

Biochar shows great potential in soil cadmium pollution treatment, however, the effect and mechanisms of biochar on cadmium passivation (CP) during the long-term process of soil from flooding to natural air-drying are not clear. In this study, a 300-day experiment was conducted to keep the flooded water level constant for the first 100 days and then dried naturally. Mechanisms of CP by lignin biochar (LBC) were analyzed through chemical analysis, FTIR-2D-COS, EEMs-PARAFAC, ultraviolet spectroscopy characterizations, and microbial community distribution of soil. Results showed that application of LBC results in rapid CP ratio in soil within 35 days, mainly in the residual and Fe-Mn bound states (total 72.80%). CP ratio further increased to 90.89% with water evaporation. The CP mechanisms include precipitation, electrostatic effect, humus complexation, and microbial remediation by promoting the propagation of fungi such as Penicillium and Trichoderma. Evaporation of water promoted the colonization of aerobic microorganisms and then increased the degree of soil humification and aromatization, thereby enhancing the cadmium passivation. Simultaneously, the biochar could reduce the relative abundance of plant pathogens in soil from 1.8% to 0.03% and the freshness index (ß/α) from 0.64 to 0.16, favoring crop growth and promoting carbon sequestration and emission reduction.


Asunto(s)
Cadmio , Carbón Orgánico , Lignina , Microbiología del Suelo , Contaminantes del Suelo , Carbón Orgánico/química , Cadmio/química , Contaminantes del Suelo/química , Lignina/química , Inundaciones , Suelo/química , Desecación
2.
Environ Sci Pollut Res Int ; 31(7): 10874-10886, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38212563

RESUMEN

In the context of carbon neutrality, promoting resource utilization of industrial alkali lignin addressing heavy metal pollution is crucial for China's pollution alleviation and carbon reduction. Microwave pyrolysis produced functionalized biochar from industrial alkali lignin for Ni(II) adsorption. LB400 achieved 343.15 mg g-1 saturated adsorption capacity in 30 min. Pseudo-second-order kinetic and Temkin isotherm models accurately described the adsorption, which was endothermic and spontaneous (ΔGÏ´ < 0, ΔHÏ´ > 0). Quantitative analysis revealed that both dissolved substances and carbon skeleton from biochar contributed to adsorption, with the former predominates (93.76%), including mineral precipitation NiCO3 (Qp) and adsorption of dissolved organic matter (QDOM). Surface complexation (Qc) and ion exchange (Qi) on the carbon skeleton accounted for 6.3%. Higher biochar preparation temperature reduced Ni(II) adsorption by dissolved substances. Overall, biochar which comes from the advantageous disposal of industrial lignin effectively removes Ni(II) contamination, encouraging ecologically sound treatment of heavy metal pollution and sustainable resource utilization.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Lignina , Adsorción , Carbón Orgánico , Carbono , Álcalis , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA