Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 33(6): 1832-8, 2012 Jun.
Artículo en Chino | MEDLINE | ID: mdl-22946162

RESUMEN

In the present study, a microcosm experiment was conducted in situ for 30 days, in order to investigate the effects of different N/P ratios (1N: 1P, 4N: 1P, 8N: 1P, 16N: 1P, 32N: 1P, 64N: 1P, 128N: 1P, and 256N: 1P) on phytoplankton community growth in the East China Sea. The results indicated that the species number, cell abundance, Chl-a content, specific growth rate as well as species composition of the phytoplankton community significantly varied with the N/P ratios. After 6 days of culture, the species number, cell abundance, Chl-a content and specific growth rate in the high N/P ratio groups were significantly higher than those in the low N/P ratio groups. After 30 days of culture, the cell abundance in the groups close to the Redfield ratio (8N: 1P, 16N: 1P, and 32N: 1P) was significantly higher than those in the other treatments. On the other hand, the phytoplankton community in all the treatments was observed a definite succession from diatoms to dinoflagellates during the present study. Nonetheless, the N/P ratios strongly affected the duration of dinoflagellate bloom as well as the dominated species: at the beginning of culture (0th day-12th day), the diatoms dominated the phytoplankton community; then the relative contribution of dinoflagellates to the total cell abundance exceeded diatoms in the 4N: 1P, 16N: 1P, and 32N: 1P groups on the 18th day. After that, the relative contribution of dinoflagellates exceeded diatoms ordinally in the other groups from the 24th day to 30th day. At the end of culture, the phytoplankton community was dominated by the dinoflagellates in all the groups except for the 8N: 1P, 16N: 1P, and 32N: 1P treatments.


Asunto(s)
Nitrógeno/análisis , Fósforo/análisis , Fitoplancton/crecimiento & desarrollo , Contaminantes Químicos del Agua/análisis , China , Diatomeas/crecimiento & desarrollo , Dinoflagelados/crecimiento & desarrollo , Océanos y Mares , Fitoplancton/clasificación , Dinámica Poblacional , Agua de Mar
2.
Ying Yong Sheng Tai Xue Bao ; 22(5): 1316-24, 2011 May.
Artículo en Chino | MEDLINE | ID: mdl-21812312

RESUMEN

In August 15-28, 2009, a preliminary study was conducted on the spatial distribution characteristics of heterotrophic bacteria (HB), inorganic phosphate bacteria (IPB), organic phosphate bacteria (OPB), denitrifying bacteria (DB), and ammonifying bacteria (AB) in the hypoxic zone of Yangtze River Estuary. In the water surface, water bottom, and sediment surface of the zone, the average quantity of AB was the largest, being 307.52 x 10(4) cells x L(-1), 184.50 x 10(4) cells x L(-1), 199.97 x 10(2) cells x g(-1), followed by that of HB (87.35 x 10(4) cfu x L(-1), 86.85 x 10(4) cfu x L(-1), and 19.56 x 10(2) cfu x g(-1)), and of OPB (19.26 x 10(4) cfu x L(-1), 18.82 x 10(4) cfu x L(-1), and 19.56 x10(2) cfu x g(-1), respectively). IPB was only observed within the Yangtze Estuary, south passage of the Estuary, and Zhoushan inshore, and its average quantity in the water surface, water bottom, and sediment surface was 18.50 x 10(4) cfu x L(-1), 31.00 x 10(4) cfu x L(-1), and 7.17 x 10(2) cfu x g(-1) respectively. DB had a wide distribution, but its average quantity was low, being 3.94 x 10(4) cells x L(-1), 23.08 x 10(4) cells x L(-1), and 6.22 x 10(2) cells x g(-1) in the water surface, water bottom, and sediment surface, respectively. Salinity, NO3(-)-N, PO4(3-)-P, SiO3(2)-Si, and pH were the main factors affecting the distribution of HB, IPB, OPB, and DB in water body and sediment surface. The HB, IPB, and OPB in water bottom and sediment surface had significant positive correlation with water temperature; the HB and OPB in water bottom and the IPB in sediment surface were significantly positively correlated with dissolved oxygen (DO); while the AB in sediment surface was significantly negatively correlated with DO. Cluster analysis showed that hypoxia affected the bacterial community structure in sediment surface.


Asunto(s)
Anaerobiosis , Bacterias/metabolismo , Nitrógeno/metabolismo , Fosfatos/metabolismo , Microbiología del Agua , China , Agua Dulce/análisis , Nitrobacter/metabolismo , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA