Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 32(3): 035701, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33089829

RESUMEN

In this study, a facile method was prepared to fabricate highly flexible, conductive and superhydrophobic polymer fabrics. Copper nanoparticles (CuNPs) were decorated on polypropylene fabrics using a simple spraying method and superhydrophobicity was obtained after vacuum drying for 4 h without any surface modifier. Accumulation of CuNPs constituted coral-like rough micro-nano structures, forming a stable Cassie model and endowing the surface with dense charge transport pathways, thus resulting in excellent superhydrophobicity (water contact angle ∼159°, sliding angle ∼2.3°) and conductivity (sheet resistance ∼0.92 Ω sq-1). The fabrics displayed superior waterproof and self-cleaning properties, as well as great sustainability in the water. Additionally, the superhydrophobicity and conductivity can be almost maintained after heat treatment, wear testing, water droplet impinging, weak alkali/acid treatment and repeated bending-kneading tests. These superhydrophobic and conductive fabrics that are free from moisture and pollution can be a reliable candidate to solve the water-penetration issue in the rapid development of flexible electronics.

2.
Nanoscale ; 11(29): 13824-13831, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31294734

RESUMEN

Magnetic behaviors within nanoscopic materials are being widely explored due to their intriguing performance and widespread applications. Herein, we studied the magnetization reversal mechanism in a unique tubular nickel ferrite (NiFe2O4), in which the building blocks of NiFe2O4 monocrystalline have a face-centered spinel structure and stack along the axial direction of the nanotube. We synthesized this tubular NiFe2O4 through an electrospinning method based on a phase separation process, and then investigated the magnetization reversal process and its relationship with the morphologies using the model of "chain-of-rings" from the micromagnetism theory. This model is developed based on the morphology and crystalline orientation of nanotubes, by which the symmetric fanning mechanism is demonstrated when the angle between the magnetic field and the chain is less than 45.3°. As a result, the simulated coercivity value is confirmed to be 271 Oe, which is close to the experimental value. In addition, the rationality of this model was further verified by the calculation of the effective magnetic anisotropy field. This work is significant for the application of tubular ferrite in the field of nano-devices and fundamental research.

3.
ACS Appl Mater Interfaces ; 11(31): 28442-28448, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31310496

RESUMEN

Magnetic nanostructures with flux-closure state or single-domain state have widespread application in diverse memory devices. However, an insight into the modulation of these variable states within one specific magnetic material is rarely reported but still needed. Herein, these micromagnetic configurations within prototypical cobalt ferrite (CoFe2O4) nanostructures in different size and dimension were studied by modulating the assembly of CoFe2O4 building blocks. We find that the CoFe2O4 nanowire (NW) has a multidomain structure when the diameter is about 90 nm, in which the domain walls (DWs) locate preferentially at the grain boundary and can convert to single-domain state when the diameter is reduced. Alternatively, a flux-closure domain state is obtained when the CoFe2O4 nanostructure changes from NW to nanosheet (NS), where the DWs location depends on the overall shape of NS. In addition, we further confirm that the magnetic anisotropy and magnetostatic energy are two main factors affecting the micromagnetic configuration in CoFe2O4 nanostructures by crystallographic analysis and micromagnetic simulations. Our experimental and simulation results demonstrate that the modulation of morphology and dimension are efficient to tailor the micromagnetic configuration in magnetic nanostructures.

4.
Nanotechnology ; 30(39): 395701, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31212256

RESUMEN

We report a novel method of three-component spray-spin-spray coating to prepare uniform and dense Ag/graphene nanosheet (Ag/GNS) composite films on a surface modified polyethylene terephthalate (PET) substrate. Compared with an untreated sample, the adhesion between composite films and the substrate was significantly enhanced due to the effects of chemical etching and molecular grafting. From the results of the four-probe test, the sheet resistance of hybrid films of Ag/GNS-5 reduced by 60% compared to the pristine Ag films, which was due to the efficient deposition of GNS by spray-spin-spray coating method. Meanwhile, a variety of complex flexible patterns were successfully fabricated with the help of the masking method. This means that the method could provide an efficient and low cost way for flexible electronics production of various complex flexible metallic coatings in practice.

5.
ACS Appl Mater Interfaces ; 10(42): 36556-36563, 2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30277060

RESUMEN

Recently, magnetic skyrmion has attracted much attention due to its potential application in racetrack memory and other nanodevices. In bulk chiral magnets with non-centrosymmetric crystal structures, skyrmion lattice phase has been extensively observed. However, in film or multilayers with interfacial Dzyaloshinskii-Moriya interaction, individual skyrmion is often observed. Here, we report a short-ordered skyrmion lattice observed in [Ta(5.0 nm)/CoFeB(1.5 nm)/MgO(1.0 nm)]15 multilayer in a remnant state. The structure, stabilization, and reversal of these skyrmions are discussed. Applying a slightly tilted in-plane magnetic field caused reversal of the skyrmion lattice. This reversal came from disappearance of skyrmions and nucleation of new skyrmions in the interstitial regions of the lattice. Also, we investigated how the skyrmion lattice depended on the CoFeB thickness. Our findings provide a pathway to stabilize and reverse the skyrmions in multilayers films.

6.
Int J Pharm ; 550(1-2): 100-113, 2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30138707

RESUMEN

Exosomes have been extensively explored as delivery vehicles due to low immunogenicity, efficient cargo delivery, and possibly intrinsic homing capacity. However, therapeutic application of exosomes is hampered by structural complexity and lack of efficient techniques for isolation and drug loading. Liposomes represent one of the most successful therapeutic nanocarriers, but are frequently criticized by short blood circulation and inefficient intracellular drug delivery. In this circumstance, a promising strategy is to facilitate a positive feedback between two fields. Herein, exosome-mimicking liposomes were formulated with DOPC/SM/Chol/DOPS/DOPE (21/17.5/30/14/17.5, mol/mol), and harnessed for delivery of VEGF siRNA to A549 and HUVEC cells. Compared with Lipo 2000 and DOTAP liposomes, exosome-mimicking liposomes exhibited less than four-fold cytotoxicity but higher storage stability and anti-serum aggregation effect. Exosome-mimicking liposomes appeared to enter A549 cells through membrane fusion, caveolae-mediated endocytosis, and macropinocytosis, while enter HUVEC through caveolae-mediated endocytosis, which revealed that the uptake pathway was dependent on cell types. Notably, exosome-mimicking liposomes exhibited significantly higher cellular uptake and silencing efficiency than PC-Chol liposomes (>three-fold), suggesting the unique lipid composition did enhance the intracellular delivery efficiency of exosome-mimicking liposomes to a significantly greater extent. However, it still remained far from satisfactory delivery as compared to cationic Lipo 2000 and DOTAP liposomes, which warranted further improvement in future research. This study may encourage further pursuit of more exosome-mimicking delivery vehicles with higher efficiency and biocompatibility.


Asunto(s)
Sistemas de Liberación de Medicamentos , Exosomas , Liposomas , ARN Interferente Pequeño/química , Células A549 , Ácidos Grasos Monoinsaturados , Células Endoteliales de la Vena Umbilical Humana , Humanos , Compuestos de Amonio Cuaternario , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/metabolismo
7.
Nanoscale ; 10(21): 10123-10129, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29781005

RESUMEN

Discovering how the magnetization reversal process is governed by the magnetic anisotropy in magnetic nanomaterials is essential and significant to understand the magnetic behaviour of micro-magnetics and to facilitate the design of magnetic nanostructures for diverse technological applications. In this study, we present a direct observation of a dynamical magnetization reversal process in single NiFe2O4 nanowire, thus clearly revealing the domination of shape anisotropy on its magnetic behaviour. Individual nanoparticles on the NiFe2O4 nanowire appear as single domain states in the remanence state, which is maintained until the magnetic field reaches 200 Oe. The magnetization reversal mechanism of the nanowire is observed to be a curling rotation mode. These observations are further verified by micromagnetic computational simulations. Our findings show that the modulation of shape anisotropy is an efficient way to tune the magnetic behaviours of cubic spinel nano-ferrites.

8.
ACS Nano ; 12(4): 3442-3448, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29558619

RESUMEN

Discovering the effect of magnetic anisotropy on the magnetization configurations of magnetic nanomaterials is essential and significant for not only enriching the fundamental knowledge of magnetics but also facilitating the designs of desired magnetic nanostructures for diverse technological applications, such as data storage devices, spintronic devices, and magnetic nanosensors. Herein, we present a direct observation of magnetocrystalline anisotropy tuning magnetization configurations in uniaxial magnetic nanomaterials with hexagonal structure by means of three modeled samples. The magnetic configuration in polycrystalline BaFe12O19 nanoslice is a curling structure, revealing that the effect of magnetocrystalline anisotropy in uniaxial magnetic nanomaterials can be broken by forming an amorphous structure or polycrystalline structure with tiny grains. Both single crystalline BaFe12O19 nanoslice and individual particles of single-particle-chain BaFe12O19 nanowire appear in a single domain state, revealing a dominant role of magnetocrystalline anisotropy in the magnetization configuration of uniaxial magnetic nanomaterials. These observations are further verified by micromagnetic computational simulations.

9.
Nanoscale ; 9(22): 7493-7500, 2017 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-28530735

RESUMEN

Low-dimensional spinel ferrites have recently attracted increasing attention because their tunable magnetic properties make them attractive candidates as spin-filtering tunnel barriers in spintronic devices and as magnetic components in artificial multiferroic heterostructures. Although we know that the distribution of cations (Fe3+ and Co2+) in a spinel structure governs its magnetic properties, their distribution in the so-called ideal inverse spinel structure of a ferrite, CoFe2O4, has not yet been imaged with sub-ångstrom resolution. In this work, we fill this gap in evidence by reporting a direct observation of the distribution of cations in an ideal inverse spinel structure of CoFe2O4 nanofibres using aberration-corrected transmission electron microscopy (TEM). The ordering of Co2+ and Fe3+ at the octahedral sites imaged along either [001], [011] or [-112] orientation was identified as 1 : 1, in accordance with the ideal inverse spinel structure. The saturation magnetisation calculated based on the crystal structure as determined from the TEM image is in good agreement with that measured experimentally on the spinel CoFe2O4 nanofibres, further confirming results from TEM.

10.
Sci Rep ; 6: 24188, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-27062992

RESUMEN

High quality single-crystal fcc-Co(x)(Mg(y)Zn(1-y))(1-x)O(1-v) epitaxial thin films with high Co concentration up to x = 0.5 have been fabricated by molecular beam epitaxy. Systematic magnetic property characterization and soft X-ray absorption spectroscopy analysis indicate that the coexistence of ferromagnetic regions, superparamagnetic clusters, and non-magnetic boundaries in the as-prepared Co(x)(Mg(y)Zn(1-y))(1-x)O(1-v) films is a consequence of the intrinsic inhomogeneous distribution of oxygen vacancies. Furthermore, the relative strength of multiple phases could be modulated by controlling the oxygen partial pressure during sample preparation. Armed with both controllable magnetic properties and tunable band-gap, Co(x)(Mg(y)Zn(1-y))(1-x)O(1-v) films may have promising applications in future spintronics.

11.
Sci Rep ; 6: 20140, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26821614

RESUMEN

This study investigated the magnetic domain walls in a single-layer soft magnetic film with strong magnetocrystalline anisotropy energy. The soft magnetic film is composed of a highly c-axis-oriented hcp-Co81Ir19 alloy with strong negative magnetocrystalline anisotropy. The domain structure of the soft Co81Ir19 films with thickness ranging from 50-230 nm in a demagnetization state was observed through magnetic force microscopy and Lorentz transmission electron microscopy. Results reveal that the critical transition thickness at which the domain wall changes from Néel type to Bloch type is about 138 nm, which is much larger than the critical value of traditional Fe- and Co-based soft magnetic films with negligible magnetocrystalline anisotropy. Theoretical calculation was also performed and the calculated result agrees well with experimental data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA