Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(28): e2404834, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38678302

RESUMEN

Alkaline zinc-based flow batteries (AZFBs) have emerged as a promising electrochemical energy storage technology owing to Zn abundance, high safety, and low cost. However, zinc dendrite growth and the formation of dead zinc greatly impede the development of AZFBs. Herein, a dual-function electrolyte additive strategy is proposed to regulate zinc nucleation and mitigate the hydroxide corrosion of zinc depositions for stable AZFBs. This strategy, as exemplified by urea, introduces an electrolyte additive to coordinate with Zn2+/Zn with proper strength, slowing zinc deposition kinetics to induce uniform nucleation and protecting the deposited zinc surface from attack by hydroxide ions through preferable adsorption. The zincate complexes with urea are identified to be Zn(OH)2(urea)(H2O)2 and Zn2(OH)4(H2O)4(urea), which exhibit slow zinc deposition kinetics, allowing instantaneous nucleation. Calculation results reveal an additional energy barrier of 1.29 eV for the subsequent adsorption of an OH- group when a urea molecule absorbs on the zinc cluster, significantly mitigating the formation of dead zinc. Consequently, prolonged cell cycling of the prototype alkaline zinc-iron flow battery demonstrates stable operation for over 130 h and an average coulombic efficiency of 98.5%. It is anticipated that this electrolyte additive strategy will pave the way for developing highly stable AZFBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA