Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36904816

RESUMEN

In the process of using the Distributed Radar Network Localization System (DRNLS) further to improve the survivability of a carrier platform, the random characteristics of the system's Aperture Resource Allocation (ARA) and Radar Cross Section (RCS) are often not fully considered. However, the random characteristics of the system's ARA and RCS will affect the power resource allocation of the DRNLS to a certain extent, and the allocation result is an essential factor determining the performance of the DRNLS's Low Probability of Intercept (LPI). Therefore, a DRNLS still has some limitations in practical application. In order to solve this problem, a joint allocation scheme of aperture and power for the DRNLS based on LPI optimization (JA scheme) is proposed. In the JA scheme, the fuzzy random Chance Constrained Programmin model for radar antenna aperture resource management (RAARM-FRCCP model) can minimize the number of elements under the given pattern parameters. The random Chance Constrained Programmin model for minimizing Schleher Intercept Factor (MSIF-RCCP model) built on this basis can be used to achieve DRNLS optimal control of LPI performance on the premise of ensuring system tracking performance requirements. The results show that when RCS has some randomness, its corresponding uniform power distribution result is not necessarily the optimal scheme. Under the condition of meeting the same tracking performance, the required number of elements and power will be reduced to a certain extent compared with the number of elements in the whole array and the power corresponding to the uniform distribution. The lower the confidence level is, the more times the threshold is allowed to pass, and the lower the power is, so that the DRNLS can have better LPI performance.

2.
Sensors (Basel) ; 23(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36679740

RESUMEN

Mass production of high-quality synthetic SAR training imagery is essential for boosting the performance of deep-learning (DL)-based SAR automatic target recognition (ATR) algorithms in an open-world environment. To address this problem, we exploit both the widely used Moving and Stationary Target Acquisition and Recognition (MSTAR) SAR dataset and the Synthetic and Measured Paired Labeled Experiment (SAMPLE) dataset, which consists of selected samples from the MSTAR dataset and their computer-generated synthetic counterparts. A series of data augmentation experiments are carried out. First, the sparsity of the scattering centers of the targets is exploited for new target pose synthesis. Additionally, training data with various clutter backgrounds are synthesized via clutter transfer, so that the neural networks are better prepared to cope with background changes in the test samples. To effectively augment the synthetic SAR imagery in the SAMPLE dataset, a novel contrast-based data augmentation technique is proposed. To improve the robustness of neural networks against out-of-distribution (OOD) samples, the SAR images of ground military vehicles collected by the self-developed MiniSAR system are used as the training data for the adversarial outlier exposure procedure. Simulation results show that the proposed data augmentation methods are effective in improving both the target classification accuracy and the OOD detection performance. The purpose of this work is to establish the foundation for large-scale, open-field implementation of DL-based SAR-ATR systems, which is not only of great value in the sense of theoretical research, but is also potentially meaningful in the aspect of military application.


Asunto(s)
Aprendizaje Profundo , Personal Militar , Humanos , Algoritmos , Simulación por Computador , Imágenes en Psicoterapia
3.
Sensors (Basel) ; 21(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34960364

RESUMEN

By repeatedly sampling, storing, and retransmitting parts of the radar signal, interrupted sampling repeater jamming (ISRJ) based on digital radio frequency memory (DRFM) can produce a train of secondary false targets symmetrical to the main false target, threatening to mislead or deceive the victim radar system. This paper proposes a computationally-effective method to estimating the parameters for ISRJ by resorting to the framework of alternating direction method of multipliers (ADMM). Firstly, the analytical form of pulse compression is derived. Then, for the purpose of estimating the parameters of ISRJ, the original problem is transformed into a nonlinear integer optimization model with respect to a window vector. On this basis, the ADMM is introduced to decompose the nonlinear integer optimization model into a series of sub-problems to estimate the width and number of ISRJ's sample slices. Finally, the numerical simulation results show that, compared with the traditional time-frequency (TF) method, the proposed method exhibits much better performance in accuracy and stability.

4.
Entropy (Basel) ; 23(9)2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34573794

RESUMEN

Space-time adaptive processing (STAP) techniques have been motivated as a key enabling technology for advanced airborne radar applications. In this paper, a slow-time code design is considered for the STAP technique in airborne radar, and the principle for improving signal-to-clutter and noise ratio (SCNR) based on slow-time coding is given. We present two algorithms for the optimization of transmitted codes under the energy constraint on a predefined area of spatial-frequency and Doppler-frequency plane. The proposed algorithms are constructed based on convex optimization (CVX) and alternating direction (AD), respectively. Several criteria regarding parameter selection are also given for the optimization process. Numerical examples show the feasibility and effectiveness of the proposed methods.

5.
Sensors (Basel) ; 21(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34372463

RESUMEN

In this paper we study the code design problem of a new form of linear frequency modulation phase-coded (LFM-PC) hybrid signal with wide Doppler tolerance based on a range-Doppler discrete ambiguity function (DAF) to get better detection performance and anti-jamming capability. The DAF of the LFM-PC inter pulse signal is derived within the Doppler tolerance. Two optimization models are established. One is single pulse sequence design (SSD) for Doppler tolerance extension based on minimum integral normalized sidelobe level (INSL); the other is multi pulse sequence set design (MSSD) for signal orthogonality based on the minimizing sum of the normalized DAF sidelobe (NDAFSL) and discrete cross ambiguity function (DCAF). Two low-complexity signal optimization methods based on alternating direction method of multiplier (ADMM) are proposed, respectively. The simulation results show that the optimized signals have either wide Doppler tolerance or good orthogonal performance, and the optimization methods (i.e., SSD-ADMM and MSSD-ADMM) have the characteristics of fast convergence speed and low operation amount.

6.
Sensors (Basel) ; 21(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374198

RESUMEN

Synthetic aperture radar (SAR) is a widely used remote sensing observation technique. However, SAR raw echo data may be lost during the process of data acquisition by radar platform. In this paper, the imaging problem of SAR echo signal with periodically missing data along the azimuth is analyzed and a novel imaging method is proposed. Firstly, the problem of artificial artifact targets caused by periodically missing data is explained in detail, and the corresponding mathematical model is established. Then, the recovery method based on the RELAX algorithm with periodic notches data is proposed. In addition, when the size of two-dimensional (2D) echo data are large, block restoration along the azimuth is proposed to reduce the amount of calculation. Finally, the advantages of the algorithm proposed in this paper is demonstrated by the points target simulated SAR echo data processing and the real raw SAR echo data processing. When the azimuth periodically missing data rate is 50%, the SAR echo data can be recovered and the well-focused image can be obtained. Comparing the image entropy value and structural similarity index (SSIM) of the focused image, it proves the superiority of the proposed algorithm in solving the imaging problem of SAR azimuth periodically missing data.

7.
Sensors (Basel) ; 20(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096679

RESUMEN

: To solve the problem of dwell time management for multiple target tracking in Low Probability of Intercept (LPI) radar network, a Nash bargaining solution (NBS) dwell time allocation algorithm based on cooperative game theory is proposed. This algorithm can achieve the desired low interception performance by optimizing the allocation of the dwell time of each radar under the constraints of the given target detection performance, minimizing the total dwell time of radar network. By introducing two variables, dwell time and target allocation indicators, we decompose the dwell time and target allocation into two subproblems. Firstly, combining the Lagrange relaxation algorithm with the Newton iteration method, we derive the iterative formula for the dwell time of each radar. The dwell time allocation of the radars corresponding to each target is obtained. Secondly, we use the fixed Hungarian algorithm to determine the target allocation scheme based on the dwell time allocation results. Simulation results show that the proposed algorithm can effectively reduce the total dwell time of the radar network, and hence, improve the LPI performance.

8.
Sensors (Basel) ; 15(6): 13121-31, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26053755

RESUMEN

In this study, the effects of non-sidelooking airborne radar clutter dispersion on space-time adaptive processing (STAP) is considered, and an efficient adaptive angle-Doppler compensation (EAADC) approach is proposed to improve the clutter suppression performance. In order to reduce the computational complexity, the reduced-dimension sparse reconstruction (RDSR) technique is introduced into the angle-Doppler spectrum estimation to extract the required parameters for compensating the clutter spectral center misalignment. Simulation results to demonstrate the effectiveness of the proposed algorithm are presented.

9.
Sensors (Basel) ; 14(9): 17055-67, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25222035

RESUMEN

In this paper, an efficient direct data domain space-time adaptive processing (STAP) algorithm for moving targets detection is proposed, which is achieved based on the distinct spectrum features of clutter and target signals in the angle-Doppler domain. To reduce the computational complexity, the high-resolution angle-Doppler spectrum is obtained by finding the sparsest coefficients in the angle domain using the reduced-dimension data within each Doppler bin. Moreover, we will then present a knowledge-aided block-size detection algorithm that can discriminate between the moving targets and the clutter based on the extracted spectrum features. The feasibility and effectiveness of the proposed method are validated through both numerical simulations and raw data processing results.

10.
Sensors (Basel) ; 8(5): 3438-3446, 2008 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-27879887

RESUMEN

In this work, a 2-D subaperture polar format algorithm (PFA) based on steppedchirp signal is proposed. Instead of traditional pulse synthesis preprocessing, the presented method integrates the pulse synthesis process into the range subaperture processing. Meanwhile, due to the multi-resolution property of subaperture processing, this algorithm is able to compensate the space-variant phase error caused by the radar motion during the period of a pulse cluster. Point target simulation has validated the presented algorithm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA