Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7344, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187500

RESUMEN

Blue corona discharges are often generated in thunderclouds penetrating into the stratosphere and are the optical manifestation of narrow bipolar events (NBEs) observed in radio signals. While their production appears to depend on convection, the cause and nature of such discharges are not well known. Here we show the observations by a lightning detection array of unusual amounts of 982 NBEs during a tropical storm on the coastline of China. NBEs of negative polarity are predominantly observed at the cloud top reaching the stratosphere, and positive NBEs are primarily at lower altitudes. We find that the dominant polarity changes with the typical time of development of thunderstorm cells, suggesting that the polarity depends on the phase of the storm cells. Furthermore, we find that the lightning jump of negative NBEs is associated with above-anvil cirrus plumes of ice crystals and water vapor in the lower stratosphere. We propose that variations in updrafts induce changes in the altitude and charge concentrations of the cloud layers, which lead to the polarity transition. Our results have implications for studies of the chemical perturbations of greenhouse gas concentrations by corona discharges at the tropopause.

2.
Nat Commun ; 12(1): 6631, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789752

RESUMEN

Narrow bipolar events (NBEs) are signatures in radio signals from thunderstorms observed by ground-based receivers. NBEs may occur at the onset of lightning, but the discharge process is not well understood. Here, we present spectral measurements by the Atmosphere-Space Interactions Monitor (ASIM) on the International Space Station that are associated with nine negative and three positive NBEs observed by a ground-based array of receivers. We found that both polarities NBEs are associated with emissions at 337 nm with weak or no detectable emissions at 777.4 nm, suggesting that NBEs are associated with streamer breakdown. The rise times of the emissions for negative NBEs are about 10 µs, consistent with source locations at cloud tops where photons undergo little scattering by cloud particles, and for positive NBEs are ~1 ms, consistent with locations deeper in the clouds. For negative NBEs, the emission strength is almost linearly correlated with the peak current of the associated NBEs. Our findings suggest that ground-based observations of radio signals provide a new means to measure the occurrences and strength of cloud-top discharges near the tropopause.

3.
J Geophys Res Atmos ; 125(9): e2019JD032099, 2020 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-32728503

RESUMEN

Narrow bipolar events (NBEs) (also called narrow bipolar pulses [NBPs] or compact intracloud discharges [CIDs]) are energetic intracloud discharges characterized by narrow bipolar electromagnetic waveforms identified from ground-based very low frequency (VLF)/low-frequency (LF) observations. The simplified ray-theory method proposed by Smith et al. (1999, https://doi.org/10.1029/1998JD200045; 2004, https://doi.org/10.1029/2002RS002790) is widely used to infer the altitude of intracloud lightning and the effective (or virtual) reflection height of the ionosphere from VLF/LF signals. However, due to the large amount of high-frequency components in NBEs, the propagation effect of the electromagnetic fields for NBEs at large distance depends nontrivially on the geometry and the effective conductivity of the Earth-ionosphere waveguide (EIWG). In this study, we investigate the propagation of NBEs by using a full-wave Finite-Difference Time-Domain (FDTD) approach. The simulated results are compared with ground-based measurements at different distances in Southern China, and we assess the accuracy of the simplified ray-theory method in estimating the altitude of the NBE source and the effective reflection height of the ionosphere. It is noted that the evaluated NBE altitudes have a slight difference of about ±1 km when compared with the full-wave FDTD results, while the evaluated ionospheric reflection heights are found to be bigger than those obtained from FDTD model by about 5 km.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA