Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Psychiatry ; 15: 1355846, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39056018

RESUMEN

Introduction: Understanding the interplay between cardiovascular parameters, cognitive stress induced by increasing load, and mental well-being is vital for the development of integrated health strategies today. By monitoring physiological signals like electrocardiogram (ECG) and photoplethysmogram (PPG) in real time, researchers can discover how cognitive tasks influence both cardiovascular and mental health. Cardiac biomarkers resulting from cognitive strain act as indicators of autonomic nervous system function, potentially reflecting conditions related to heart and mental health, including depression and anxiety. The purpose of this study is to investigate how cognitive load affects ECG and PPG measurements and whether these can signal early cardiovascular changes during depression and anxiety disorders. Methods: Ninety participants aged 18 to 45 years, ranging from symptom-free individuals to those with diverse psychological conditions, were assessed using psychological questionnaires and anamnesis. ECG and PPG monitoring were conducted as volunteers engaged in a cognitive 1-back task consisting of two separate blocks, each with six progressively challenging levels. The participants' responses were analyzed to correlate physiological and psychological data with cognitive stressors and outcomes. Results: The study confirmed a notable interdependence between anxiety and depression, and cardiovascular responses. Task accuracy decreased with increased task difficulty. A strong relationship between PPG-measured heart rate and markers of depression and trait anxiety was observed. Increasing task difficulty corresponded to an increase in heart rate, linked with elevated levels of depression and trait anxiety. A strong relationship between ECG-measured heart rate and anxiety attacks was observed. Increasing task difficulty corresponded to an increase in heart rate, linked with elevated levels of anxiety attacks, although this association decreased under more challenging conditions. Discussion: The findings underscore the predictive importance of ECG and PPG heart rate parameters in mental health assessment, particularly depression and anxiety under cognitive stress induced by increasing load. We discuss mechanisms of sympathetic activation explaining these differences. Our research outcomes have implications for clinical assessments and wearable device algorithms for more precise, personalized mental health diagnostics.

2.
Front Integr Neurosci ; 13: 14, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105535

RESUMEN

Medial frontal cortex is currently viewed as the main hub of the performance monitoring system; upon detection of an error committed, it establishes functional connections with brain regions involved in task performance, thus leading to neural adjustments in them. Previous research has identified targets of such adjustments in the dorsolateral prefrontal cortex, posterior cortical regions, motor cortical areas, and subthalamic nucleus. Yet most of such studies involved visual tasks with relatively moderate cognitive load and strong dependence on motor inhibition - thus highlighting sensory, executive and motor effects while underestimating sensorimotor transformation and related aspects of decision making. Currently there is ample evidence that posterior parietal cortical areas are involved in task-specific neural processes of decision making (including evidence accumulation, sensorimotor transformation, attention, etc.) - yet, to our knowledge, no EEG studies have demonstrated post-error increase in functional connectivity in the theta-band between midfrontal and posterior parietal areas during performance on non-visual tasks. In the present study, we recorded EEG while subjects were performing an auditory version of the cognitively demanding attentional condensation task; this task involves rather non-straightforward stimulus-to-response mapping rules, thus, creating increased load on sensorimotor transformation. We observed strong pre-response alpha-band suppression in the left parietal area, which presumably reflected involvement of the posterior parietal cortex in task-specific decision-making processes. Negative feedback was followed by increased midfrontal theta-band power and increased functional coupling in the theta band between midfrontal and left parietal regions. This could be interpreted as activation of the performance monitoring system and top-down influence of this system on the posterior parietal regions involved in decision making, respectively. This inter-site coupling related to negative feedback was stronger for subjects who tended to commit errors with slower response times. Generally, current findings support the idea that slower errors are related to the state of outcome uncertainty caused by failures of task-specific processes, associated with posterior parietal regions.

3.
Front Hum Neurosci ; 11: 218, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28529478

RESUMEN

Cognitive control includes maintenance of task-specific processes related to attention, and non-specific regulation of motor threshold. Depending upon the nature of the behavioral tasks, these mechanisms may predispose to different kinds of errors, with either increased or decreased response time (RT) of erroneous responses relative to correct responses. Specifically, slow responses are related to attentional lapses and decision uncertainty, these conditions tending to delay RTs of both erroneous and correct responses. Here we studied if RT may be a valid approximation distinguishing trials with high and low levels of sustained attention and decision uncertainty. We analyzed response-related and feedback-related modulations in theta, alpha and beta band activity in the auditory version of the two-choice condensation task, which is highly demanding for sustained attention while involves no inhibition of prepotent responses. Depending upon response speed and accuracy, trials were divided into slow correct, slow erroneous, fast correct and fast erroneous. We found that error-related frontal midline theta (FMT) was present only on fast erroneous trials. The feedback-related FMT was equally strong on slow erroneous and fast erroneous trials. Late post-response posterior alpha suppression was stronger on erroneous slow trials. Feedback-related frontal beta was present only on slow correct trials. The data obtained cumulatively suggests that RT allows distinguishing the two types of trials, with fast trials related to higher levels of attention and low uncertainty, and slow trials related to lower levels of attention and higher uncertainty.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA