Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230869

RESUMEN

Glioma is a refractory malignant tumor with a powerful capacity for invasiveness and a poor prognosis. This study aims to investigate the role and mechanism of tubulin beta class IVA (TUBB4A) in glioma progression. The differential expression of TUBB4A in humans was obtained from databases and analyzed. Glioma cells U251-MG and U87-MG were intervened by pcDNA3.1(+) and TUBB4A overexpression plasmid. MTT, CCK8, LDH, wound healing, transwell, and western blotting were used to explore whether TUBB4A participates in the development of glioma. Reactive oxygen species (ROS) were detected by the DCFH-DA probe. Mitochondrial membrane potential (MMP) was examined by JC-1. It was found that TUBB4A expression level correlated with tumor grade, IDH1 status, 1p/19q status, and poor survival in glioma patients. In addition, TUBB4A overexpression inhibited the proliferation, migration, and invasion of U251-MG and U87-MG, while increasing the degree of apoptosis. Notably, TUBB4A overexpression promotes ROS generation and MMP depolarization, and induces mitophagy through the PINK1/Parkin pathway. Interestingly, mitochondria-targeted ROS scavenger reversed the effect of TUBB4A overexpression on PINK1/Parkin expression and mitophagy, whereas mitophagy inhibitor did not affect ROS production. And the effect of TUBB4A overexpression on mitophagy and glioma progression was consistent with that of PINK1/Parkin agonist. In conclusion, TUBB4A is a molecular marker for predicting the prognosis of glioma patients and an effective target for inhibiting glioma progression by regulating ROS-PINK1/Parkin-mitophagy pathway.

2.
ACS Appl Mater Interfaces ; 13(18): 21635-21644, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33938727

RESUMEN

Recent advances in memristive nanocrystal assemblies leverage controllable colloidal chemistry to induce a broad range of defect-mediated electrochemical reactions, switching phenomena, and modulate active parameters. The sample geometry of virtually all resistive switching studies involves thin film layers comprising monomodal diameter nanocrystals. Here we explore the evolution of bipolar and threshold resistive switching across highly ordered, solution-processed nanoribbon assemblies and mixtures comprising BaZrO3 (BZO) and SrZrO3 (SZO) nanocrystals. The effects of nanocrystal size, packing density, and A-site substitution on operating voltage (VSET and VTH) and switching mechanism were studied through a systematic comparison of nanoribbon heterogeneity (i.e., BZO-BZO vs BZO-SZO) and monomodal vs bimodal size distributions (i.e., small-small and small-large). Analysis of the current-voltage response confirms that tip-induced, trap-mediated space-charge-limited current and trap-assisted tunneling processes drive the low- and high-resistance states, respectively. Our results demonstrate that both smaller nanocrystals and heavier alkaline earth substitution decrease the onset voltage and improve stability and state retention of monomodal assemblies and bimodal nanocrystal mixtures, thus providing a base correlation that informs fabrication of solution-processed, memristive nanocrystal assemblies.

3.
Protein Cell ; 12(4): 279-296, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32666500

RESUMEN

Sterol-regulatory element binding proteins (SREBPs) are the key transcriptional regulators of lipid metabolism. The activation of SREBP requires translocation of the SREBP precursor from the endoplasmic reticulum to the Golgi, where it is sequentially cleaved by site-1 protease (S1P) and site-2 protease and releases a nuclear form to modulate gene expression. To search for new genes regulating cholesterol metabolism, we perform a genome-wide CRISPR/Cas9 knockout screen and find that partner of site-1 protease (POST1), encoded by C12ORF49, is critically involved in the SREBP signaling. Ablation of POST1 decreases the generation of nuclear SREBP and reduces the expression of SREBP target genes. POST1 binds S1P, which is synthesized as an inactive protease (form A) and becomes fully mature via a two-step autocatalytic process involving forms B'/B and C'/C. POST1 promotes the generation of the functional S1P-C'/C from S1P-B'/B (canonical cleavage) and, notably, from S1P-A directly (non-canonical cleavage) as well. This POST1-mediated S1P activation is also essential for the cleavages of other S1P substrates including ATF6, CREB3 family members and the α/ß-subunit precursor of N-acetylglucosamine-1-phosphotransferase. Together, we demonstrate that POST1 is a cofactor controlling S1P maturation and plays important roles in lipid homeostasis, unfolded protein response, lipoprotein metabolism and lysosome biogenesis.


Asunto(s)
Proteínas de la Membrana/metabolismo , Transducción de Señal , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Sistemas CRISPR-Cas , Células HeLa , Humanos , Lipoproteínas/biosíntesis , Lipoproteínas/genética , Lisosomas/genética , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética
4.
PLoS Genet ; 16(8): e1008955, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32776921

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder characterized by excess lipid accumulation in the liver without significant consumption of alcohol. The transmembrane 6 superfamily member 2 (TM6SF2) E167K missense variant strongly associates with NAFLD in humans. The E167K mutation destabilizes TM6SF2, resulting in hepatic lipid accumulation and low serum lipid levels. However, the molecular mechanism by which TM6SF2 regulates lipid metabolism remains unclear. By using tandem affinity purification in combination with mass spectrometry, we found that apolipoprotein B (APOB), ER lipid raft protein (ERLIN) 1 and 2 were TM6SF2-interacting proteins. ERLINs and TM6SF2 mutually bound and stabilized each other. TM6SF2 bound and stabilized APOB via two luminal loops. ERLINs did not interact with APOB directly but still increased APOB stability through stabilizing TM6SF2. This APOB stabilization was hampered by the E167K mutation that reduced the protein expression of TM6SF2. In mice, knockout of Tm6sf2 and knockdown of Tm6sf2 or Erlins decreased hepatic APOB protein level, causing lipid accumulation in the liver and lowering lipid levels in the serum. We conclude that defective APOB stabilization, as a result of ERLINs or TM6SF2 deficiency or E167K mutation, is a key factor contributing to NAFLD.


Asunto(s)
Apolipoproteína B-100/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Animales , Colesterol/genética , Colesterol/metabolismo , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Inmunoprecipitación , Metabolismo de los Lípidos/genética , Lípidos/sangre , Lípidos/genética , Ratones , Ratones Noqueados , Complejos Multiproteicos/genética , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Polimorfismo de Nucleótido Simple/genética , Unión Proteica/genética , Transfección
5.
Materials (Basel) ; 12(16)2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31395822

RESUMEN

Successful synthesis of ordered porous, multi-component complex materials requires a series of coordinated processes, typically including fabrication of a master template, deposition of materials within the pores to form a negative structure, and a third deposition or etching process to create the final, functional template. Translating the utility and the simplicity of the ordered nanoporous geometry of binary oxide templates to those comprising complex functional oxides used in energy, electronic, and biology applications has been met with numerous critical challenges. This review surveys the current state of commonly used complex material nanoporous template synthesis techniques derived from the base anodic aluminum oxide (AAO) geometry.

6.
Sci China Life Sci ; 62(9): 1117-1135, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31144242

RESUMEN

Most mammalian cells take up cholesterol from low-density lipoproteins (LDLs) via receptor-mediated endocytosis. After reaching lysosomes, LDL-derived cholesterol continues to transport to downstream organelles including the ER for specific structural and functional needs. Peroxisomes are recently found to receive cholesterol from lysosomes through lysosome-peroxisome membrane contacts. However, whether and how cholesterol is conveyed from peroxisomes to the ER remain unknown. Here, by combining high-resolution microscopic analyses and in vitro reconstitution of highly purified organelles or artificial liposomes, we demonstrate that peroxisomes form membrane contacts with the ER through the interaction between peroxisomal PI(4,5)P2 and ER-resident extended synaptotagmin-1, 2 and 3 (E-Syts). Depletion of peroxisomal PI(4,5)P2 or E-Syts markedly decreases peroxisome-ER membrane contacts and induces cholesterol accumulation in lysosomes. Furthermore, we show that cholesterol is delivered from 3H-labeled peroxisomes or PI(4,5)P2-containing liposomes to the ER in vitro, and that the presence of peroxisomes augments cholesterol transfer from lysosomes to the ER. Together, our study reveals a new cholesterol transport pathway along the lysosome-peroxisome-ER membrane contacts in the cell.


Asunto(s)
Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Peroxisomas/metabolismo , Animales , Transporte Biológico , Calcio/metabolismo , Línea Celular , Humanos , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Modelos Animales , Mutación , Transducción de Señal , Sinaptotagminas/metabolismo
7.
mBio ; 10(2)2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30992355

RESUMEN

Microbially produced electrically conductive protein filaments are of interest because they can function as conduits for long-range biological electron transfer. They also show promise as sustainably produced electronic materials. Until now, microbially produced conductive protein filaments have been reported only for bacteria. We report here that the archaellum of Methanospirillum hungatei is electrically conductive. This is the first demonstration that electrically conductive protein filaments have evolved in Archaea Furthermore, the structure of the M. hungatei archaellum was previously determined (N. Poweleit, P. Ge, H. N. Nguyen, R. R. O. Loo, et al., Nat Microbiol 2:16222, 2016, https://doi.org/10.1038/nmicrobiol.2016.222). Thus, the archaellum of M. hungatei is the first microbially produced electrically conductive protein filament for which a structure is known. We analyzed the previously published structure and identified a core of tightly packed phenylalanines that is one likely route for electron conductance. The availability of the M. hungatei archaellum structure is expected to substantially advance mechanistic evaluation of long-range electron transport in microbially produced electrically conductive filaments and to aid in the design of "green" electronic materials that can be microbially produced with renewable feedstocks.IMPORTANCE Microbially produced electrically conductive protein filaments are a revolutionary, sustainably produced, electronic material with broad potential applications. The design of new protein nanowires based on the known M. hungatei archaellum structure could be a major advance over the current empirical design of synthetic protein nanowires from electrically conductive bacterial pili. An understanding of the diversity of outer-surface protein structures capable of electron transfer is important for developing models for microbial electrical communication with other cells and minerals in natural anaerobic environments. Extracellular electron exchange is also essential in engineered environments such as bioelectrochemical devices and anaerobic digesters converting wastes to methane. The finding that the archaellum of M. hungatei is electrically conductive suggests that some archaea might be able to make long-range electrical connections with their external environment.


Asunto(s)
Conductividad Eléctrica , Flagelos/fisiología , Methanospirillum/fisiología , Electricidad , Transporte de Electrón , Fenilalanina/química
8.
PLoS One ; 13(11): e0207697, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30481194

RESUMEN

The recent availability of digital traces generated by cellphone calls has significantly increased the scientific understanding of human mobility. Until now, however, based on low time resolution measurements, previous works have ignored to study human mobility under various time scales due to sparse and irregular calls, particularly in the era of mobile Internet. In this paper, we introduced Mobile Flow Records, flow-level data access records of online activity of smartphone users, to explore human mobility. Mobile Flow Records collect high-resolution information of large populations. By exploiting this kind of data, we show the models and statistics of human mobility at a large-scale (3,542,235 individuals) and finer-granularity (7.5min). Next, we investigated statistical variations and biases of mobility models caused by different time scales (from 7.5min to 32h), and found that the time scale does influence the mobility model, which indicates a deep coupling of human mobility and time. We further show that mobility behaviors like transportation modes contribute to the diversity of human mobility, by exploring several novel and refined features (e.g., motion speed, duration, and trajectory distance). Particularly, we point out that 2-hour sampling adopted in previous works is insufficient to study detailed motion behaviors. Our work not only offers a macroscopic and microscopic view of spatial-temporal human mobility, but also applies previously unavailable features, both of which are beneficial to the studies on phenomena driven by human mobility.


Asunto(s)
Teléfono Celular/estadística & datos numéricos , Recolección de Datos/estadística & datos numéricos , Sistemas de Información Geográfica/estadística & datos numéricos , Análisis Espacio-Temporal , Algoritmos , Recolección de Datos/métodos , Humanos , Modelos Teóricos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA