RESUMEN
2D dilute magnetic semiconductors (DMS) based on transition metal dichalcogenides (TMD) offer an innovative pathway for advancing spintronic technologies, including the potential to exploit phenomena such as the valley Zeeman effect. However, the impact of magnetic ordering on the valley degeneracy breaking and on the enhancement of the optical transitions g-factors of these materials remains an open question. Here, a giant effective g-factors ranging between ≈-27 and -69 for the bound exciton at 4 K in vanadium-doped WSe2 monolayers, obtained through magneto-photoluminescence (PL) experiments is reported. This giant g-factor disappears at room temperature, suggesting that this response is associated with a magnetic ordering of the vanadium impurity states at low temperatures. Ab initio calculations for the vanadium-doped WSe2 monolayer confirm the existence of magnetic ordering of the vanadium states, which leads to degeneracy breaking of the valence bands at K and K'. A phenomenological analysis is employed to correlate this splitting with the measured enhanced effective g-factor. The findings shed light on the potential of defect engineering of 2D materials for spintronic applications.