Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(29): 20022-20036, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39007185

RESUMEN

The chemical kinetic studies of hydrogen atom (H-atom) abstraction reactions by hydroperoxyl (HȮ2) radicals from five branched pentanol isomers, including 3-methyl-1-butanol, 2-methyl-1-butanol, 1,1-dimethyl-1-propanol, 1,2-dimethyl-1-propanol, and 2,2-dimethyl-1-propanol were investigated systematically through high-level ab initio calculations. Geometry optimization, frequency analysis, and zero-point energy (ZPE) corrections were performed for six reactants, twenty-three transition states (TSs), and twenty-four products at the M06-2X/6-311++G(d,p) level of theory. The intrinsic reaction coordinate calculation was performed at the same level of theory to confirm the transition state connection. The one-dimensional hindered rotor treatment for low-frequency torsional modes was also treated at the M06-2X/6-311++G(d,p) level of theory. The QCISD(T)/CBS level of theory was used to calculate the single-point energies for the species whose T1 diagnostic value was lower than 0.035. At the same time, the CASPT2/CBS level of theory was used to calculate the single-point energies for the channel in which the T1 diagnostic value of transition states was greater than 0.035. Rate constants for the H-atom abstraction reactions from the five branched pentanol isomers by HȮ2 radicals were calculated by using conventional transition state theory with asymmetric Eckart tunneling corrections in the temperature range of 500-2000 K. Rate constants and branching ratios for the title reactions and the rate rules for ten different H-atom abstraction types were investigated. Temperature-dependent thermochemistry properties for all reactants and products were calculated by the composite methods of G3/G4/CBS-QB3/CBS-APNO, which were in good agreement with the data available in the literature. Rate constants for the H-atom abstraction reactions by HȮ2 radical from branched pentanol isomers were investigated in this work as part I, and those for linear pentanol isomers will be analyzed in part II. All the calculated kinetics and thermochemistry data can be utilized in the model development for branched pentanol isomers oxidation.

2.
Phys Chem Chem Phys ; 26(25): 17631-17644, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38864351

RESUMEN

Reaction kinetics of hydrogen atom abstraction from six alkyl cyclohexanes, methyl cyclohexane (MCH), ethyl cyclohexane (ECH), n-propyl cyclohexane (nPCH), iso-propyl cyclohexane (iPCH), sec-butyl cyclohexane (sBCH) and iso-butyl cyclohexane (iBCH), by the H atom are systematically studied in this work. The M06-2X method combined with the 6-311++G(d,p) basis set is used to perform geometry optimization, frequency analysis and zero-point energy calculations for all species. The intrinsic reaction coordinate (IRC) calculations are performed to confirm the transition states connecting the reactants and products correctly. One-dimensional hindered rotors are used to treat the low frequency torsional models with potentials scanned at the M06-2X/6-31G level of theory. Electronic single-point energy calculations for all reactants, transition states, and products are performed at the QCISD(T)/CBS level of theory. High-pressure limiting rate constants of 39 reaction channels are obtained using conventional transition state theory with asymmetric Eckart tunneling corrections in the temperature range 298.15-2000 K. Reaction rate rules for H-atom abstraction by the H atom from alkyl cyclohexanes on primary, secondary and tertiary carbon sites on both the side chain and ring are provided. The obtained rate constants are given by the Arrhenius expression in the temperature range 500-2000 K, which can be used for the combustion kinetics model development for alkyl cyclohexanes.

3.
Phys Chem Chem Phys ; 26(21): 15494-15510, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38752432

RESUMEN

High-level ab initio calculations are conducted for studying the kinetics of three linear pentanol radicals generated through H-atom abstraction reactions. The species involved are optimized using the M06-2X/6-311++G(d,p) level of theory, while a relaxed scan at the M06-2X/6-31g level of theory with 10° increments is used for the hindrance potential for low-frequency torsional modes. Single-point energies for all stationary points are obtained through the QCISD(T) and MP2 methods in combination with cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets, which can be extrapolated to the complete basis set (CBS) limit. The rate constants and branching ratios for isomerization and decomposition reactions are computed over a temperature range of 250-2000 K and a pressure range of 0.01-100 atm. Isomerization reactions are dominant at low temperatures, while decomposition reactions are more dominant at high temperatures. The branching ratio of the isomerization reaction exhibits a slight decrease with increasing pressure, while the trend for decomposition reactions depends on the type of the breaking bond. Based on the calculations for five branched pentanol radicals in part I, kinetics of linear and branched pentanol radicals are compared in this work and the results reveal that, for the same kind of ß-scission reaction at similar positions of linear and branched pentanol radicals, the rate constants of branched ones are faster than those of linear ones at low temperatures. The hydroxyl group adjacent to the breaking bond can increase the ß-scission reaction rate constants, while the effect can be ignored when the hydroxyl group is not adjacent to the breaking bond. Moreover, compared to when the hydroxyl group is located in the middle of the carbon chain, its positioning at the chain's end yields a more noticeable impact on the products and rate constants of C-O bond and O-H bond ß-scission reactions. Besides, when incorporating calculated rate constants into the CRECK model, the updated mechanism shows a better performance for ignition delay times of 1-pentanol in the NTC range but exhibits lower reactivity at higher temperatures. The simulation of speciation profiles also shows better agreement with the experimental data obtained using a flow reactor.

4.
Environ Sci Technol ; 58(22): 9804-9814, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38771927

RESUMEN

Autotrophic denitrification utilizing iron sulfides as electron donors has been well studied, but the occurrence and mechanism of abiotic nitrate (NO3-) chemodenitrification by iron sulfides have not yet been thoroughly investigated. In this study, NO3- chemodenitrification by three types of iron sulfides (FeS, FeS2, and pyrrhotite) at pH 6.37 and ambient temperature of 30 °C was investigated. FeS chemically reduced NO3- to ammonium (NH4+), with a high reduction efficiency of 97.5% and NH4+ formation selectivity of 82.6%, but FeS2 and pyrrhotite did not reduce NO3- abiotically. Electrochemical Tafel characterization confirmed that the electron release rate from FeS was higher than that from FeS2 and pyrrhotite. Quenching experiments and density functional theory calculations further elucidated the heterogeneous chemodenitrification mechanism of NO3- by FeS. Fe(II) on the FeS surface was the primary site for NO3- reduction. FeS possessing sulfur vacancies can selectively adsorb oxygen atoms from NO3- and water molecules and promote water dissociation to form adsorbed hydrogen, thereby forming NH4+. Collectively, these findings suggest that the NO3- chemodenitrification by iron sulfides cannot be ignored, which has great implications for the nitrogen, sulfur, and iron cycles in soil and water ecosystems.


Asunto(s)
Compuestos de Amonio , Nitratos , Sulfuros , Nitratos/química , Compuestos de Amonio/química , Sulfuros/química , Hierro/química , Desnitrificación
5.
Phys Chem Chem Phys ; 25(26): 17320-17336, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37345723

RESUMEN

Theoretical investigations on the kinetics of decomposition and isomerization reactions for five types of branched pentanol radicals are carried out in this work. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all reactants, transition states, and products, while the hindrance potentials for the lower frequency modes in all of the species were obtained through a relaxed scan with an increment of 10° at the M06-2X/6-31G level of theory. Single-point energies of all species were determined at the QCISD(T)/cc-pVDZ, TZ level of theories with basis set corrections from MP2/cc-pVDZ, TZ, QZ methods. The RRKM/master equation was solved to calculate the pressure- and temperature-dependent rate coefficients for all channels in the pressure range of 0.01-100 atm over 250-2000 K. Pressure and temperature-dependent branching fractions of key species produced from pentanol radicals show that most of the pentanol radical isomers tend to isomerize to alkoxy radicals via a six-membered-ring or five-membered-ring transition state at low temperatures, producing ketones or aldehydes. At higher temperatures, the ß-scission reactions are the main reaction channels for the consumption of pentanol radicals. A weak pressure dependence has been found for all isomerization reactions, and it becomes more and more important as pressure increases. The pressure dependence trends are different for the ß-scission reactions of different branched pentanol radicals. In part I, the results for branched pentanol radical isomers are presented in detail, while in part II the results for linear pentanol radical isomers will be discussed.

6.
Phys Chem Chem Phys ; 25(15): 10795-10810, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37010903

RESUMEN

Chemical kinetic studies of hydrogen atom abstraction reactions by hydroperoxyl (HȮ2) radical from six alkyl cyclohexanes of methyl cyclohexane (MCH), ethyl cyclohexane (ECH), n-propyl cyclohexane (nPCH), iso-propyl cyclohexane (iPCH), sec-butyl cyclohexane (sBCH), and iso-butyl cyclohexane (iBCH) are carried out systematically through high-level ab initio calculations. Geometry optimizations and frequency calculations for all species involved in the reactions are performed at the M06-2X/6-311++G(d,p) level of theory. Electronic single-point energy calculations are calculated at the UCCSD(T)-F12a/cc-pVDZ-F12 level of theory, with zero-point energy corrections. High-pressure limit rate constants for the reactions of alkyl cyclohexanes + HȮ2, in the temperature range of 500-2000 K, are calculated using conventional transition state theory taking asymmetric Eckart tunneling corrections and the one-dimensional hindered rotor approximation into consideration. Elementary reaction rate constants and branching ratios for each alkyl cyclohexane species were investigated, and rate constant rules of primary, secondary, and tertiary sites on the side-chain and the ring are provided here. Additionally, temperature-dependent thermochemical properties for reactants and products were also obtained in this work. The updated kinetics and thermochemistry data are used in the alkyl cyclohexane mechanisms to investigate their effects on ignition delay time predictions of shock tube and rapid compression machine data, and species concentrations from a jet-stirred reactor. It is found that these investigated reactions promote ignition delay times in the temperature range of 800-1200 K and also improve the prediction of cyclic olefin species formation which stems from the decomposition of fuel radicals.

7.
J Phys Chem A ; 127(8): 1960-1974, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36802637

RESUMEN

The detailed kinetic properties of hydrogen atom abstraction by methylperoxy (CH3Ȯ2) radicals from alkanes, alkenes, dienes, alkynes, ethers, and ketones are systematically studied in this work. Geometry optimization, frequency analysis, and zero-point energy corrections were performed for all species at the M06-2X/6-311++G(d,p) level of theory. The intrinsic reaction coordinate calculation was consistently performed to ensure that the transition state connects the correct reactants and products, and one-dimensional hindered rotor scanning results were performed at the M06-2X/6-31G level of theory. The single-point energies of all reactants, transition states, and products were obtained at the QCISD(T)/CBS level of theory. High-pressure-limit rate constants of 61 reaction channels were calculated using conventional transition state theory with asymmetric Eckart tunneling corrections over the temperature range of 298.15-2000 K. Reaction rate rules for H atom abstraction by CH3Ȯ2 radicals from fuel molecules with different functional groups are constructed, which can be used in the development of combustion models of these fuels and fuel types. In addition, the influence of the functional groups on the internal rotation of the hindered rotor is also discussed.

8.
Phys Chem Chem Phys ; 24(41): 25337-25346, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36227270

RESUMEN

High-level ab initio calculations were performed to investigate the kinetics of the important initial steps of 2-methyl-2-butanol (2M2B) oxidation. Hydrogen-atom abstraction reactions by hydroxyl (˙OH) radicals, dehydration reactions of 2M2B molecules, and unimolecular isomerization and decomposition reactions of 2M2B radicals produced by H-atom abstraction were all included in this work. The potential energy surfaces were characterized at the QCISD(T)/CBS//M06-2X/6-311++G(d,p) level of theory. Variational transition state theory (VTST) was employed to calculate the rate coefficients for the H-atom abstraction reactions. It is interesting to note that the hydrogen bond formed in the transition state (TS) in H-atom abstraction reactions, leading to a ring-shaped structure, has a large influence on the electronic energy barriers and rotational-vibrational properties of the TS and thus the rate coefficients. For comparison, rate coefficient calculations were carried out for the same reaction channel by employing different types of TS structures separately, with or without hydrogen bonds. For all the unimolecular reactions studied here, pressure-dependent rate coefficients were obtained through Rice-Ramsperger-Kassel-Marcus/master equation (RRKM/ME) calculations at pressures of 0.01-100 atm. In addition, thermochemical properties at temperatures from 300 to 3000 K for all the species in the title reactions were calculated, which were found to be in good agreement with literature data. The kinetics and thermochemical data calculated in this study are important in predicting the combustion properties of 2M2B, which can be used in the combustion kinetic model development of 2M2B oxidation.

9.
Environ Sci Process Impacts ; 24(11): 2043-2069, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36043854

RESUMEN

Aviation soot can affect contrail and cirrus cloud formation and impact climate. A product of incomplete combustion, soot particles, are fractal and hydrophobic aggregates comprising carbonaceous spheres with complex physicochemical properties. In the cirrus cloud regime, the surface wettability and pore abundance of soot particles are important determinants for their ice nucleation ability via pore condensation and freezing. In the atmosphere, soot particles can undergo various ageing processes which modify their surface chemistry and porosity, thus acting as ice nucleating particles with varying abilities as a function of ageing. In this study, size-selected soot particles were treated by thermal denuding at 573 K in a pure nitrogen (N2) or synthetic air (N2 + O2) flow and then exposed to varying relative humidity conditions at a fixed temperature in the range from 218 to 243 K, to investigate the role of volatile content in the ice nucleation ability. Both organic-lean and organic-rich propane (C3H8) flame soot particles, as well as two types of commercially available carbon black soot particles with high and low surface wettability, were tested. The size and mass distribution of soot aerosol were monitored during the ice nucleation experiments. Bulk soot samples also prepared in pure N2 or synthetic air environments at 573 K were characterised by thermogravimetric analysis, Fourier transform infrared spectroscopy and dynamic vapour sorption measurements, to reveal the relation between denuding volatile content, associated soot particle property modifications and the ice nucleation ability. Our study shows that thermal denuding induces a change in soot particle porosity playing a dominant role in regulating its ice nucleation via the pore condensation and freezing mechanism. The enrichment in mesopore (2-50 nm) availability may enhance soot ice nucleation. The presence of O2 in the thermal denuding process may introduce new active sites on soot particles for water interaction and increase soot surface wettability. However, these active sites only facilitate soot ice nucleation when mesopore structures are available. We conclude that a change in volatile content modifies both morphological properties and surface chemistry for soot particles, but porosity change plays the dominant role in regulating soot particle ice nucleation ability.

10.
Phys Chem Chem Phys ; 24(31): 18582-18599, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35894127

RESUMEN

An extensive and reliable database of thermodynamic properties of C6-C12 aromatic molecules is constructed by using quantum chemistry calculations. There are 101 molecules in total, which cover a variety of structures including mono-substituted, di-substituted, and bi-cyclic aromatics which can be important intermediates in the combustion of alkylbenzenes. Based on the database, a consistent set of Benson group additive values (GAV) and non-nearest neighbor interactions (NNI) is developed to extend the applicability of Benson's group additivity method for aromatic molecules. Meanwhile, GAVs of existing groups are also updated to improve their accuracy. Geometry optimizations, and vibrational frequency calculations are conducted at the M06-2X/6-311++G(d,p) level of theory. Internal rotor potentials for lower-frequency modes are obtained at the M06-2X/6-31G level of theory. G3 and G4 compound methods are used to derive the 0 K enthalpies of formation via the atomization approach. The entropy and temperature-dependent heat capacity values of all species are calculated via the Master Equation System Solver (MESS) code. This work also provides an extensive literature comparison to validate the calculated results, and good agreement is observed with literature data. The correction terms beyond a group range are explored. The NNIs of di-substituted aromatics with substituents including OH, CHO, and CH3 groups are reported. Entropy reduction is observed in the molecules with two substituents in the ortho position, which mainly derives from the hindered internal rotations. In addition, ring strain corrections (RSC) of dicyclic aromatics are evaluated. The strain energies of molecules with a four-membered side ring are prominently large, as the bond length and bond angle distortions are severely restricted. Ring strain also plays a key role in the C-H bond strength associated with the benzylic carbons in dicyclic aromatics. The loss of a hydrogen atom can destroy the high ring-strain geometry leading to a large C-H bond energy.

11.
J Phys Chem A ; 124(23): 4605-4631, 2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32396376

RESUMEN

The temperature- and pressure-dependence of rate constants for several radicals and unsaturated hydrocarbons reactions (1,3-C5H8/1,4-C5H8/cyC5H8 + H, C2H4 + C3H5-a, C3H6 + C2H3) are analyzed in this paper. The abstraction reactions of these systems are also calculated and compared with available literature data. C5H9 radicals can be produced via H atom addition reactions to the pentadiene isomers and cyclopentene, and also by H-atom abstraction reactions from 1- and 2-pentene and cyclopentane. Comprehensive C5H9 potential energy surface (PES) analyses and high-pressure limiting rate constants for related reactions have been explored in part I of this work ( J. Phys. Chem. A 2019, 123 (22), 9019-9052). In this work, a chemical kinetic model is constructed based on the computed thermochemistry and high-pressure limiting rate constants from part I, to further understand the chemistry of different C5H8 molecules. The most important channels for these addition reactions are discussed in the present work based on reaction pathway analyses. The dominant reaction pathways for these five systems are combined together to generate a simplified C5H9 PES including nine reactants, 25 transition states (TSs), and nine products. Spin-restricted single point energies are calculated for radicals and TSs on the simplified PES at the ROCCSD(T)/aug-cc-pVTZ level of theory with basis set corrections from MP2/aug-cc-pVXZ (where X = T and Q). Temperature- and pressure-dependent rate constants are calculated using RRKM theory with a Master Equation analysis, with restricted energies used for minima on the simplified C5H9 PES and unrestricted energies for other species, over a temperature range of 300-2000 K and in the pressure range 0.01-100 atm. The rate constants calculated are in good agreement with those in the literature. The chemical kinetic model is updated with pressure-dependent rate constants and is used to simulate the species concentration profiles for H atom addition to cyclopentane and cyclopentene. Through detailed analyses and comparisons, this model can reproduce the experimental measurements of species qualitatively and quantitatively with reasonably good agreement.

12.
J Phys Chem A ; 123(42): 9019-9052, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31566374

RESUMEN

In this study, the reactions of C5H9 radicals are theoretically investigated, with a particular emphasis on hydrogen atom addition reactions to 1,3-pentadiene (C5H8) to form C5H9 radicals, although the subsequent isomerization and decomposition reactions of the C5H9 radicals are also of direct relevance to the radicals formed from the pyrolysis and oxidation of species including pentene and cyclopentane. Moreover, H-atom abstraction reactions by hydrogen atoms from 1,3-pentadiene are also investigated. The geometries and frequencies of 63 potential energy surface (PES) minima and 88 transition states are optimized at the ωB97XD/aug-cc-pVTZ level of theory. Spin-unrestricted open-shell single-point energies for all the species are calculated at the CCSD(T)/aug-cc-pVTZ level of theory with basis set corrections from MP2/aug-cc-pVXZ (where X = T and Q). A one-dimensional hindered rotor treatment is employed for torsional modes, with the M06-2X/6-311++G(D,P) method used to compute the potential energy as a function of the dihedral angle. The high-pressure limiting rate constants and the thermochemical properties for C5 species are calculated using the Master Equation System Solver (MESS) with conventional transition-state theory and comparisons made with existing available literature data. A hydrogen atom can add to the terminal carbon atom of 1,3-pentadiene to form the 2,4-C5H9 radical and/or the internal carbon atoms to form 2,5-C5H9, 1,4-C5H9, and 1,3-C5H9 radicals. Among the four entrance channels for H atom addition reactions, the formation of 2,4-C5H9 and 1,3-C5H9 radicals is more exothermic in comparison to the other C5H9 isomers (2,5-C5H9, 1,4-C5H9) because of the resonantly stabilized allylic structure. Consequently, the formation of the former is generally dominant in terms of barrier heights. H atom addition reactions to 1,3-pentadiene are compared to available C3-C5 alkenes and dienes, with external addition calculated to be kinetically favored over internal addition. However, the correlation between heats of formation and energy barriers for H atom addition to 1,2-dienes is different from that for 1,3- and 1,4-dienes. Hydrogen atom addition and abstraction rate constants are also compared for 1,3-pentadiene, with addition found to be dominant. The subsequent unimolecular reactions on the C5H9 PES are found to be highly complex with reactions taking place on a multiple-well multiple-channel PES. For clarity, the reaction mechanism and kinetics of each C5H9 radical are discussed individually in terms of the computed enthalpy of the reaction and activation, the transition-state structure/reaction class, and also in terms of the combustion species for which the reactions are of potential importance. The reactions on the C5H9 PES are divided into three reaction classes (H-shift isomerization, cycloaddition, and ß-scission reactions), and the reactivity-structure-based estimation rules for energy barriers are derived for these three reaction classes and compared to literature results for alkyl radicals.

13.
J Phys Chem A ; 123(40): 8506-8526, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31502844

RESUMEN

Alkyl radicals are prominent in combustion chemistry as they are formed by hydrocarbon decomposition or from a radical attack on hydrocarbons. Accurate determinations of the thermochemistry and kinetics of their unimolecular isomerization and decomposition reactions and related addition reactions of alkenes are therefore important in simulating the combustion chemistry of virtually all hydrocarbon fuels. In this work, a comprehensive potential energy surface (PES) for H-atom addition to and abstraction from 1- and 2-pentene, and the subsequent C-C and C-H ß-scission reactions, and H-atom transfer reactions has been considered. Thermochemical values for the species on the C5H11 PES were calculated as a function of temperature (298-2000 K), with enthalpies of formation determined using a network of isodesmic reactions. High-pressure limiting and pressure-dependent rate constants were calculated using the Rice-Ramsperger-Kassel-Marcus theory coupled with a one-dimensional master equation. As a validation of our theoretical results, hydrogen atomic resonance absorption spectrometry experiments were performed on the H-atom addition and abstraction reactions of 1- and 2-pentene. By incorporating our calculations into a detailed chemical kinetic model (AramcoMech 3.0), excellent agreement with these experiments is observed. The theoretical results are further validated via a comprehensive series of simulations of literature data. Our a priori model is found to reproduce important absolute species concentrations and product ratios reported therein.

14.
J Phys Chem A ; 121(40): 7433-7445, 2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-28885843

RESUMEN

The oxidation chemistry of the simplest conjugated hydrocarbon, 1,3-butadiene, can provide a first step in understanding the role of polyunsaturated hydrocarbons in combustion and, in particular, an understanding of their contribution toward soot formation. On the basis of our previous work on propene and the butene isomers (1-, 2-, and isobutene), it was found that the reaction kinetics of H-atom addition to the C═C double bond plays a significant role in fuel consumption kinetics and influences the predictions of high-temperature ignition delay times, product species concentrations, and flame speed measurements. In this study, the rate constants and thermodynamic properties for H-atom addition to 1,3-butadiene and related reactions on the C4H7 potential energy surface have been calculated using two different series of quantum chemical methods and two different kinetic codes. Excellent agreement is obtained between the two different kinetics codes. The calculated results including zero-point energies, single-point energies, rate constants, barrier heights, and thermochemistry are systematically compared among the two quantum chemical methods. 1-Methylallyl (C4H71-3) and 3-buten-1-yl (C4H71-4) radicals and C2H4 + C2H3 are found to be the most important channels and reactivity-promoting products, respectively. We calculated that terminal addition is dominant (>80%) compared to internal H-atom addition at all temperatures in the range 298-2000 K. However, this dominance decreases with increasing temperature. The calculated rate constants for the bimolecular reaction C4H6 + H → products and C2H4 + C2H3 → products are in excellent agreement with both experimental and theoretical results from the literature. For selected C4 species, the calculated thermochemical values are also in good agreement with literature data. In addition, the rate constants for H atom abstraction by H atoms have also been calculated, and it is found that abstraction from the central carbon atoms is the dominant channel (>70%) at temperatures in the range of 298-2000 K. Finally, by incorporating our calculated rate constants for both H atom addition and abstraction into our recently developed 1,3-butadiene model, we show that laminar flame speed predictions are significantly improved, emphasizing the value of this study.

15.
J Phys Chem A ; 121(9): 1890-1899, 2017 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-28195726

RESUMEN

Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants calculated in this work have also been used in predicting the reactivity of the target fuels of 1-butene, 2-butene, isobutene, 2-methylfuran, 2,5-dimethylfuran, and toluene, and the results show that the ignition delay times for those fuels have been increased by a factor of 1.5-3. This work provides a first systematic study of one of the key initiation reaction for compounds containing allylic hydrogen atoms.

16.
J Phys Chem A ; 120(36): 7037-44, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27558073

RESUMEN

Theoretical aspects of the development of a chemical kinetic model for the pyrolysis and combustion of a cyclic ketone, cyclopentanone, are considered. Calculated thermodynamic and kinetic data are presented for the first time for the principal species including 2- and 3-oxo-cyclopentyl radicals, which are in reasonable agreement with the literature. These radicals can be formed via H atom abstraction reactions by H and Ö atoms and È®H, HÈ®2, and CH3 radicals, the rate constants of which have been calculated. Abstraction from the ß-hydrogen atom is the dominant process when È®H is involved, but the reverse holds true for HÈ®2 radicals. The subsequent ß-scission of the radicals formed is also determined, and it is shown that recent tunable VUV photoionization mass spectrometry experiments can be interpreted in this light. The bulk of the calculations used the composite model chemistry G4, which was benchmarked in the simplest case with a coupled cluster treatment, CCSD(T), in the complete basis set limit.

17.
J Phys Chem A ; 118(51): 12089-104, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25387985

RESUMEN

We have performed a systematic, theoretical chemical kinetic investigation of H atom abstraction by H atoms and ȮH, HȮ2, and CH3 radicals from aldehydes (methanal, ethanal, propanal, and isobutanal) and acids (methanoic acid, ethanoic acid, propanoic acid, and isobutanoic acid). The geometry optimizations and frequencies of all of the species in the reaction mechanisms of the title reactions were calculated using the MP2 method and the 6-311G(d,p) basis set. The one-dimensional hindered rotor treatment for reactants and transition states and the intrinsic reaction coordinate calculations were also determined at the MP2/6-311G(d,p) level of theory. For the reactions of methanal and methanoic acid with H atoms and ȮH, HȮ2, and CH3 radicals, the calculated relative electronic energies were obtained with the CCSD(T)/cc-pVXZ (where X = D, T, and Q) method and were extrapolated to the complete basis set limit. The electronic energies obtained with the CCSD(T)/cc-pVTZ method were benchmarked against the CCSD(T)/CBS energies and were found to be within 1 kcal mol(-1) of one another. Thus, the energies calculated using the less expensive CCSD(T)/cc-pVTZ method were used in all of the reaction mechanisms and in calculating our high-pressure limit rate constants for the title reactions. Rate constants were calculated using conventional transition state theory with an asymmetric Eckart tunneling correction, as implemented in Variflex. Herein, we report the individual and average rate constants, on a per H atom basis, and total rate constants in the temperature range 500-2000 K. We have compared some of our rate constant results to available experimental and theoretical data, and our results are generally in good agreement.


Asunto(s)
Aldehídos/química , Ácidos Carboxílicos/química , Hidrógeno/química , Modelos Moleculares , Radicales Libres/química , Cinética , Conformación Molecular , Temperatura , Termodinámica
18.
J Phys Chem A ; 118(27): 4889-99, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-24878337

RESUMEN

A systematic investigation of the rate constants for hydrogen atom abstraction reactions by hydroxyl radicals on esters has been performed. The geometry optimizations and frequency calculations were obtained using the second-order Møller-Plesset method with the 6-311G(d,p) basis set. The same method was also used in order to determine the dihedral angle potential for each individual hindered rotor in each reactant and transition state. Intrinsic reaction coordinate calculations were used in order to connect each transition state to the corresponding local minimum. For the reactions of methyl ethanoate with an (•)OH radical, the relative electronic energies were calculated using the G3 and the CCSD(T)/cc-pVXZ (where X = D, T, and Q) methods, which were extrapolated to the complete basis set (CBS) limit. The electronic energies obtained using the G3 method were then benchmarked against the CBS results and were found to be within 1 kcal mol(-1) of one another. The high-pressure limit rate constants for every reaction channel were calculated by conventional transition-state theory, with an asymmetric Eckart tunneling correction, using the energies obtained with the G3 method. We report the individual, average, and total rate constants in the temperature range from 500 to 2200 K. Our calculated results are within a factor of 2 for methyl ethanoate and between 40% to 50% for methyl propanoate and methyl butanoate when compared to previously reported experimental data.


Asunto(s)
Ésteres/química , Hidrógeno/química , Radical Hidroxilo/química , Cinética , Modelos Moleculares , Presión
19.
J Phys Chem A ; 118(8): 1300-8, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24483837

RESUMEN

In this work, we detail hydrogen atom abstraction reactions from six ethers by the hydroperoxyl radical, including dimethyl ether, ethyl methyl ether, propyl methyl ether, isopropyl methyl ether, butyl methyl ether, and isobutyl methyl ether, in order to test the effect of the functional group on the rate constant calculations. The Møller-Plesset (MP2) method with the 6-311G(d,p) basis set has been employed in the geometry optimizations and frequency calculations of all of the species involved in the above reaction systems. The connections between each transition state and the corresponding local minima have been determined by intrinsic reaction coordinate calculations. Energies are reported at the CCSD(T)/cc-pVTZ level of theory and include the zero-point energy corrections. As a benchmark in the electronic energy calculations, the CCSD(T)/CBS extrapolation was used for the reactions of dimethyl ether + HÈ®2 radicals. A systematic calculation of the high-pressure limit rate constants has been performed using conventional transition-state theory, including asymmetric Eckart tunneling corrections, in the temperature range of 500-2000 K. The one dimensional hindrance potentials obtained at MP2/6-311G(d,p) for the reactants and transition states have been used to describe the low frequency torsional modes. Herein, we report the calculated individual, average, and total rate constants. A branching ratio analysis for every reaction site has also been performed.

20.
J Phys Chem A ; 117(51): 14006-18, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-24175616

RESUMEN

This work details an ab initio and chemical kinetic study of the hydrogen atom abstraction reactions by the hydroperoxyl radical (HÈ®2) on the following esters: methyl ethanoate, methyl propanoate, methyl butanoate, methyl pentanoate, methyl isobutyrate, ethyl ethanoate, propyl ethanoate, and isopropyl ethanoate. Geometry optimizations and frequency calculations of all of the species involved, as well as the hindrance potential descriptions for reactants and transition states, have been performed with the Møller-Plesset (MP2) method using the 6-311G(d,p) basis set. A validation of all of the connections between transition states and local minima was performed by intrinsic reaction coordinate calculations. Electronic energies for all of the species are reported at the CCSD(T)/cc-pVTZ level of theory in kcal mol(-1) with the zero-point energy corrections. The CCSD(T)/CBS (extrapolated from CCSD(T)/cc-pVXZ, in which X = D, T, Q) was used for the reactions of methyl ethanoate + HÈ®2 radicals as a benchmark in the electronic energy calculations. High-pressure limit rate constants, in the temperature range 500-2000 K, have been calculated for all of the reaction channels using conventional transition state theory with asymmetric Eckart tunneling corrections. The 1-D hindered rotor approximation has been used for the low frequency torsional modes in both reactants and transition states. The calculated individual and total rate constants are reported for all of the reaction channels in each reaction system. A branching ratio analysis for each reaction site has also been investigated for all of the esters studied in this work.


Asunto(s)
Ácidos Acíclicos/química , Electrones , Hidrógeno/química , Peróxidos/química , Ésteres , Cinética , Modelos Químicos , Teoría Cuántica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA