Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell Biochem ; 477(12): 2829-2839, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35670901

RESUMEN

Hypoxia can cause Epithelial-mesenchymal transition (EMT) in renal tubular cells, and in turn, renal fibrosis. We tested the expression of TRIM46, a member of tripartite motif-containing (TRIM) family proteins, and mesenchymal markers under hypoxia. Our results showed that hypoxia significantly enhanced expression of TRIM46 in HK2 human renal proximal tubular epithelial cells. Our data further showed that hypoxia led to upregulated expression of mesenchymal markers including α-smooth muscle actin, vimentin, and Snail, and downregulated expression of epithelial marker E-cadherin, coupled with an increased abundance of nuclear ß-catenin. However, such effects were reversed when TRIM46 expression was knocked down. TRIM46 overexpression had similar effects as hypoxia exposure, and such effects were reversed when cells were treated with XAV-939, a selective inhibitor for ß-catenin. Furthermore, we found that TRIM46 promoted ubiquitination and proteasomal degradation of Axin1 protein, a robust negative regulator of Wnt/ß-catenin signaling activity. Finally, increased TRIM46 coupled with decreased Axin1 was observed in a rat renal fibrosis model. These data suggest a novel mechanism contributing to EMT that mediates hypoxia-induced renal fibrosis. Our results suggest that selectively inhibiting this pathway that activates fibrosis in human kidney may lead to development of a novel therapeutic approach for managing this disease.


Asunto(s)
Transición Epitelial-Mesenquimal , Enfermedades Renales , Vía de Señalización Wnt , Animales , Humanos , Ratas , Proteína Axina/genética , beta Catenina/metabolismo , Fibrosis , Hipoxia , Enfermedades Renales/metabolismo
2.
Front Cell Dev Biol ; 8: 616747, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33634104

RESUMEN

Renal fibrosis is considered as the final pathway of all types of kidney diseases, which can lead to the progressive loss of kidney functions and eventually renal failure. The mechanisms behind are diversified, in which the mammalian target of rapamycin (mTOR) pathway is one of the most important regulatory pathways that accounts for the disease. Several processes that are regulated by the mTOR pathway, such as autophagy, epithelial-mesenchymal transition (EMT), and endoplasmic reticulum (ER) stress, are tightly associated with renal fibrosis. In this study, we have reported that the expression of tripartite motif-containing (TRIM) protein 6, a member of TRIM family protein, was highly expressed in renal fibrosis patients and positively correlated with the severity of renal fibrosis. In our established in vitro and in vivo renal fibrosis models, its expression was upregulated by the Angiotensin II-induced nuclear translocation of nuclear factor-κB (NF-κB) p50 and p65. In HK2 cells, the expression of TRIM6 promoted the ubiquitination of tuberous sclerosis proteins (TSC) 1 and 2, two negative regulators of the mTORC1 pathway. Moreover, the knockdown of TRIM6 was found efficient for alleviating renal fibrosis and inhibiting the downstream processes of EMT and ER in both HK2 cells and 5/6-nephrectomized rats. Clinically, the level of TRIM6, TSC1/2, and NF-κB p50 was found closely related to renal fibrosis. As a result, we have presented the first study on the role of TRIM6 in the mTORC1 pathway in renal fibrosis models and our findings suggested that TRIM6 may be a potential target for the treatment of renal fibrosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA