RESUMEN
Uruguayan beef is one of the most popular products in the export market. In this study, we report the complete mitochondrial genome sequence of Uruguayan native cattle for the first time. The total mitochondrial genome sequence is 16,339 bp in length with the base composition of 33.4% for A, 27.2% for T, 26.0% for C, and 13.4% for G. The description of all genes is similar to the typical mitochondrial genomes of cattle. The annotated mitochondrial genome of Uruguayan native cattle would serve as an important genetic data set for further study.
RESUMEN
The long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3), a tumor suppressor, is critical for the carcinogenesis and progression of different cancers, including hepatocellular carcinoma (HCC). To date, the roles of lncRNA MEG3 in HCC are not well illustrated. Therefore, this study used western blot and qRT-PCR to evaluate the expression of MEG3, miR-9-5p, and Sex determining Region Y-related HMG-box 11 (SOX11) in HCC tissues and cell lines. RNA pull-down and luciferase reporter assay were used to evaluate these molecular interactions. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and flow cytometry detected the viability and apoptosis of HCC cells, respectively. The results showed that MEG3 and SOX11 were poorly expressed but miR-9-5p was highly expressed in HCC. The expression levels of these molecules suggested a negative correlation between MEG3 and miR-9-5p and a positive correlation with SOX11, confirmed by Pearson's correlation analysis and biology experiments. Furthermore, MEG3 could combine with miR-9-5p, and SOX11 was a direct target of miR-9-5p. Moreover, MEG3 over-expression promoted cell apoptosis and growth inhibition in HCC cells through sponging miR-9-5p to up-regulate SOX11. Therefore, the interactions among MEG3, miR-9-5p, and SOX11 might offer a novel insight for understanding HCC pathogeny and provide potential diagnostic markers and therapeutic targets for HCC.
Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Factores de Transcripción SOXC/genética , Apoptosis/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Estadificación de Neoplasias , ARN Largo no Codificante/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción SOXC/metabolismo , Activación Transcripcional , Transfección , Regulación hacia ArribaRESUMEN
The long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3), a tumor suppressor, is critical for the carcinogenesis and progression of different cancers, including hepatocellular carcinoma (HCC). To date, the roles of lncRNA MEG3 in HCC are not well illustrated. Therefore, this study used western blot and qRT-PCR to evaluate the expression of MEG3, miR-9-5p, and Sex determining Region Y-related HMG-box 11 (SOX11) in HCC tissues and cell lines. RNA pull-down and luciferase reporter assay were used to evaluate these molecular interactions. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and flow cytometry detected the viability and apoptosis of HCC cells, respectively. The results showed that MEG3 and SOX11 were poorly expressed but miR-9-5p was highly expressed in HCC. The expression levels of these molecules suggested a negative correlation between MEG3 and miR-9-5p and a positive correlation with SOX11, confirmed by Pearson's correlation analysis and biology experiments. Furthermore, MEG3 could combine with miR-9-5p, and SOX11 was a direct target of miR-9-5p. Moreover, MEG3 over-expression promoted cell apoptosis and growth inhibition in HCC cells through sponging miR-9-5p to up-regulate SOX11. Therefore, the interactions among MEG3, miR-9-5p, and SOX11 might offer a novel insight for understanding HCC pathogeny and provide potential diagnostic markers and therapeutic targets for HCC.
Asunto(s)
Humanos , Masculino , Femenino , Persona de Mediana Edad , Carcinoma Hepatocelular/genética , MicroARNs/genética , Factores de Transcripción SOXC/genética , ARN Largo no Codificante/genética , Neoplasias Hepáticas/genética , Transfección , Regulación Neoplásica de la Expresión Génica , Activación Transcripcional , Regulación hacia Arriba , Apoptosis/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , MicroARNs/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Factores de Transcripción SOXC/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , ARN Largo no Codificante/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Estadificación de NeoplasiasRESUMEN
The plant Rhodiola crenulata is a perennial herbaceous species distributed in the plateau region of southwestern China, especially the Hengduan Mountains region. It has been one of the most important traditional herbal remedies in Tibet for more than one thousand years, but the accelerated and uncontrolled collection of this plant since the 1980s has lead to deforestation. We used inter-simple sequence repeats (ISSR) to assess levels of genetic variation in R. crenulata from nine diverse natural populations in eastern Tibet and northern Yunnan, the first time such a study has been carried out. The 12 primers we used were able to detect 184 polymorphic loc. Analysis of molecular variance (AMOVA) indicated that species level genetic diversity was relatively high (p = 97.83 percent, and Ho = 0.464) and analysis using ShannonÆs index showed that the within and between genetic diversity of R. crenulata are approximately equal. NeiÆs genetic distance and unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis showed that the three populations from Tibet and the six populations from Yunnan form two major clusters. The Yunnan populations from three locations were further divided into three corresponding groups, indicating that genetic differentiation was correlated to geographic distribution. Understanding the genetic structure of R. crenulata provides insight for the conservation and management of this endangered species.