Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.178
Filtrar
1.
J Colloid Interface Sci ; 678(Pt B): 336-342, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39245023

RESUMEN

Silicon (Si) is considered as one of the most potential commercial materials for the next-generation lithium-ion batteries (LIBs) owing to its high theoretical capacity and low voltage platform. However, the severe volume expansion and poor electric conductivity of Si anodes limit the practical application. Herein, a hierarchical porous hard carbon@Si@soft carbon (PHC@Si@SC) material was prepared by a chemical vapor deposition (CVD) and following calcination process. The differences in capacities and initial Coulombic efficiencies (ICEs) resulting from variations in silane deposition are demonstrated using PHC@Si as a model. To improve the cycling performance, a cheap pitch-derived soft carbon was introduced to protect the nano-Si to suppress the volume expansion. The formed PHC@Si@SC anode delivers a high capacity of 1625 mAh g-1 and a high ICE of 86.8%, attributed to the excellent cooperation of hard and soft carbon. The capacity retention is 55% after 100 cycles with a harsh N/P ratio of 1.1 in a PHC@Si@SC||NCM811 full cell. This work provides a strategy, which is easy to scale up for practical application.

2.
ACS Nano ; 18(37): 25671-25684, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39223995

RESUMEN

Combined photodynamic and photothermal therapy (PDT and PTT) can achieve more superior therapeutic effects than the sole mode by maximizing the photon utilization, but there remains a significant challenge in the development of related single-molecule photosensitizers (PSs), particularly those with type I photosensitization. In this study, self-assembly of squaraine dyes (SQs) is shown to be a promising strategy for designing PSs for combined type I PDT and PTT, and a supramolecular PS (TPE-SQ7) has been successfully developed through subtle molecular design of an indolenine SQ, which can self-assemble into highly ordered H-aggregates in aqueous solution as well as nanoparticles (NPs). In contrast to the typical quenching effect of H-aggregates on reactive oxygen species (ROS) generation, our results encouragingly manifest that H-aggregates can enhance type I ROS (•OH) generation by facilitating the intersystem crossing process while maintaining a high PTT performance. Consequently, TPE-SQ7 NPs with ordered H-aggregates not only exhibit superior combined therapeutic efficacy than the well-known PS (Ce6) under both normoxic and hypoxic conditions but also have excellent biosafety, making them have important application prospects in tumor phototherapy and antibacterial fields. This study not only proves that the supramolecular self-assembly of SQs is an effective strategy toward high-performance PSs for combined type I PDT and PTT but also provides a different understanding of the effect of H-aggregates on the PDT performance.


Asunto(s)
Ciclobutanos , Fenoles , Fotoquimioterapia , Fármacos Fotosensibilizantes , Terapia Fototérmica , Especies Reactivas de Oxígeno , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Humanos , Ciclobutanos/química , Ciclobutanos/farmacología , Fenoles/química , Fenoles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Ratones , Animales , Supervivencia Celular/efectos de los fármacos , Nanopartículas/química , Antineoplásicos/química , Antineoplásicos/farmacología , Sustancias Macromoleculares/química , Sustancias Macromoleculares/farmacología , Sustancias Macromoleculares/síntesis química
3.
Stem Cell Res Ther ; 15(1): 286, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256871

RESUMEN

BACKGROUND: The formation of stem cell clones enables close contact of stem cells inside. The gap junctions in such clone spheres establish a microenvironment that allows frequent intercellular communication to maintain self-renewal and functions of stem cells. Nevertheless, the essential gap junction protein for molecular signaling in clones is poorly known. METHODS: Primary human airway basal cells (hBCs) were isolated from brushing samples through bronchoscopy and then cultured. A tightly focused femtosecond laser was used to excite the local Ca2+ in an individual cell to initiate an internal Ca2+ wave in a clone to screen gap junction proteins. Immunoflourescence staining and clonogenicity assay were used to evaluate self-renewal and functions. RNA and protein levels were assessed by PCR and Western blot. Air-liquid interface assay was conducted to evaluate the differentiation potential. A Naphthalene injury mouse model was used to assess the regeneration potential. RESULTS: Herein, we identify Connexin 25 (Cx25) dominates intercellular Ca2+ communications in clones of hBCs in vitro to maintain the self-renewal and pluripotency of them. The self-renewal and in vitro differentiation functions and in vivo regeneration potential of hBCs in an airway damage model are both regulated by Cx25. The abnormal expression of Cx25 is validated in several diseases including IPF, Covid-19 and bronchiectasis. CONCLUSION: Cx25 is essential for hBC clones in maintaining self-renewal and functions of hBCs via gap junctions.


Asunto(s)
Conexinas , Regeneración , Humanos , Animales , Ratones , Conexinas/metabolismo , Conexinas/genética , Diferenciación Celular , COVID-19/metabolismo , COVID-19/virología , COVID-19/patología , Uniones Comunicantes/metabolismo , Autorrenovación de las Células , Calcio/metabolismo , Células Cultivadas , SARS-CoV-2/metabolismo , Masculino , Células Madre/metabolismo , Células Madre/citología
4.
BMC Pregnancy Childbirth ; 24(1): 601, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285345

RESUMEN

BACKGROUND: It remains unclear which early gestational biomarkers can be used in predicting later development of gestational diabetes mellitus (GDM). We sought to identify the optimal combination of early gestational biomarkers in predicting GDM in machine learning (ML) models. METHODS: This was a nested case-control study including 100 pairs of GDM and euglycemic (control) pregnancies in the Early Life Plan cohort in Shanghai, China. High sensitivity C reactive protein, sex hormone binding globulin, insulin-like growth factor I, IGF binding protein 2 (IGFBP-2), total and high molecular weight adiponectin and glycosylated fibronectin concentrations were measured in serum samples at 11-14 weeks of gestation. Routine first-trimester blood test biomarkers included fasting plasma glucose (FPG), serum lipids and thyroid hormones. Five ML models [stepwise logistic regression, least absolute shrinkage and selection operator (LASSO), random forest, support vector machine and k-nearest neighbor] were employed to predict GDM. The study subjects were randomly split into two sets for model development (training set, n = 70 GDM/control pairs) and validation (testing set: n = 30 GDM/control pairs). Model performance was evaluated by the area under the curve (AUC) in receiver operating characteristics. RESULTS: FPG and IGFBP-2 were consistently selected as predictors of GDM in all ML models. The random forest model including FPG and IGFBP-2 performed the best (AUC 0.80, accuracy 0.72, sensitivity 0.87, specificity 0.57). Adding more predictors did not improve the discriminant power. CONCLUSION: The combination of FPG and IGFBP-2 at early gestation (11-14 weeks) could predict later development of GDM with moderate discriminant power. Further validation studies are warranted to assess the utility of this simple combination model in other independent cohorts.


Asunto(s)
Biomarcadores , Diabetes Gestacional , Aprendizaje Automático , Primer Trimestre del Embarazo , Humanos , Diabetes Gestacional/sangre , Diabetes Gestacional/diagnóstico , Femenino , Embarazo , Estudios de Casos y Controles , Biomarcadores/sangre , Adulto , Primer Trimestre del Embarazo/sangre , China/epidemiología , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Globulina de Unión a Hormona Sexual/análisis , Proteína C-Reactiva/análisis , Factor I del Crecimiento Similar a la Insulina/análisis , Factor I del Crecimiento Similar a la Insulina/metabolismo , Fibronectinas/sangre , Adiponectina/sangre , Glucemia/análisis , Valor Predictivo de las Pruebas , Curva ROC , Modelos Logísticos
6.
mSystems ; 9(9): e0017624, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39105582

RESUMEN

Nitrogen (N)-fixing organisms, also known as diazotrophs, play a crucial role in N-limited ecosystems by controlling the production of bioavailable N. The carbon-dominated cold-seep ecosystems are inherently N-limited, making them hotspots of N fixation. However, the knowledge of diazotrophs in cold-seep ecosystems is limited compared to other marine ecosystems. In this study, we used multi-omics to investigate the diversity and catabolism of diazotrophs in deep-sea cold-seep bottom waters. Our findings showed that the relative abundance of diazotrophs in the bacterial community reached its highest level in the cold-seep bottom waters compared to the cold-seep upper waters and non-seep bottom waters. Remarkably, more than 98% of metatranscriptomic reads aligned on diazotrophs in cold-seep bottom waters belonged to the genus Sagittula, an alphaproteobacterium. Its metagenome-assembled genome, named Seep-BW-D1, contained catalytic genes (nifHDK) for nitrogen fixation, and the nifH gene was actively transcribed in situ. Seep-BW-D1 also exhibited chemosynthetic capability to oxidize C1 compounds (methanol, formaldehyde, and formate) and thiosulfate (S2O32-). In addition, we observed abundant transcripts mapped to genes involved in the transport systems for acetate, spermidine/putrescine, and pectin oligomers, suggesting that Seep-BW-D1 can utilize organics from the intermediates synthesized by methane-oxidizing microorganisms, decaying tissues from cold-seep benthic animals, and refractory pectin derived from upper photosynthetic ecosystems. Overall, our study corroborates that carbon-dominated cold-seep bottom waters select for diazotrophs and reveals the catabolism of a novel chemosynthetic alphaproteobacterial diazotroph in cold-seep bottom waters. IMPORTANCE: Bioavailable nitrogen (N) is a crucial element for cellular growth and division, and its production is controlled by diazotrophs. Marine diazotrophs contribute to nearly half of the global fixed N and perform N fixation in various marine ecosystems. While previous studies mainly focused on diazotrophs in the sunlit ocean and oxygen minimum zones, recent research has recognized cold-seep ecosystems as overlooked N-fixing hotspots because the seeping fluids in cold-seep ecosystems introduce abundant bioavailable carbon but little bioavailable N, making most cold seeps inherently N-limited. With thousands of cold-seep ecosystems detected at continental margins worldwide in the past decades, the significant role of cold seeps in marine N biogeochemical cycling is emphasized. However, the diazotrophs in cold-seep bottom waters remain poorly understood. Through multi-omics, this study identified a novel alphaproteobacterial chemoheterotroph belonging to Sagittula as one of the most active diazotrophs residing in cold-seep bottom waters and revealed its catabolism.


Asunto(s)
Fijación del Nitrógeno , Agua de Mar , Agua de Mar/microbiología , Alphaproteobacteria/metabolismo , Alphaproteobacteria/genética , Metagenoma , Nitrógeno/metabolismo , Ecosistema , Frío
7.
Neurobiol Dis ; 200: 106637, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142611

RESUMEN

Pathogenic missense mutation of the FGF12 gene is responsible for a variable disease phenotypic spectrum. Disease-specific therapies require precise dissection of the relationship between different mutations and phenotypes. The lack of a proper animal model hinders the investigation of related diseases, such as early-onset epileptic encephalopathy. Here, an FGF12AV52H mouse model was generated using CRISPR/Cas9 technology, which altered the A isoform without affecting the B isoform. The FGF12AV52H mice exhibited seizure susceptibility, while no spontaneous seizures were observed. The increased excitability in dorsal hippocampal CA3 neurons was confirmed by patch-clamp recordings. Furthermore, immunostaining showed that the balance of excitatory/inhibitory neurons in the hippocampus of the FGF12AV52H mice was perturbed. The increases in inhibitory SOM+ neurons and excitatory CaMKII+ neurons were heterogeneous. Moreover, the locomotion, anxiety levels, risk assessment behavior, social behavior, and cognition of the FGF12AV52H mice were investigated by elevated plus maze, open field, three-chamber sociability, and novel object tests, respectively. Cognition deficit, impaired risk assessment, and social behavior with normal social indexes were observed, implying complex consequences of V52H FGF12A in mice. Together, these data suggest that the function of FGF12A in neurons can be immediate or long-term and involves modulation of ion channels and the differentiation and maturation of neurons. The FGF12AV52H mouse model increases the understanding of the function of FGF12A, and it is of great importance for revealing the complex network of the FGF12 gene in physiological and pathological processes.


Asunto(s)
Fenotipo , Animales , Ratones , Convulsiones/genética , Convulsiones/metabolismo , Modelos Animales de Enfermedad , Neuronas/metabolismo , Mutación Missense , Hipocampo/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos
8.
Phys Chem Chem Phys ; 26(33): 22208-22219, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39129465

RESUMEN

Cracks originating from thermal expansion and thermally induced phase transitions significantly hinder thermal conduction in certain energetic materials. For 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystals, a classic explosive, their temperature-dependent thermal conductivity serves as a crucial parameter determining safety and stability. In this work, the thermal conductivity of HMX single crystals before and after thermal damage under different heating conditions was measured and calculated, as well as the thermal conductivity of different regions of each single crystal. A threefold discrepancy in thermal conductivity was observed between room temperature and the phase transition temperature of the HMX crystal. The different effects of different types of damage and cracks, characterized by using 3D X-ray computed tomography (CT), on the thermal conduction process of the crystal were further analyzed. The results indicate that different heating methods influence the phase transformation of the crystals and the distributions of fast cracks and small cracks. The strong directivity of the fast cracks will significantly impact the thermal conductivity along two horizontal directions, whereas small cracks exert the greatest influence on the primary direction of heat conduction. The relevant conclusions were also verified by finite element analysis (FEA) modeling.

9.
Aging Cell ; : e14309, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135295

RESUMEN

Atrial fibrillation (AF) has been receiving a lot of attention from scientists and clinicians because it is an extremely common clinical condition. Due to its special hemodynamic changes, AF has a high rate of disability and mortality. So far, although AF has some therapeutic means, it is still an incurable disease because of its complex risk factors and pathophysiologic mechanisms, which is a difficult problem for global public health. Age is an important independent risk factor for AF, and the incidence of AF increases with age. To date, there is no comprehensive review on aging-associated AF. In this review, we systematically discuss the pathophysiologic evidence for aging-associated AF, and in particular explore the pathophysiologic mechanisms of mitochondrial dysfunction, telomere attrition, cellular senescence, disabled macroautophagy, and gut dysbiosis involved in recent studies with aging-associated AF. We hope that by exploring the various dimensions of aging-associated AF, we can better understand the specific relationship between age and AF, which may be crucial for innovative treatments of aging-associated AF.

10.
Adv Sci (Weinh) ; : e2407599, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159306

RESUMEN

Interfacial electron transfer between electroactive microorganisms (EAMs) and electrodes underlies a wide range of bio-electrochemical systems with diverse applications. However, the electron transfer rate at the biotic-electrode interface remains low due to high transmembrane and cell-electrode interfacial electron transfer resistance. Herein, a modular engineering strategy is adopted to construct a Shewanella oneidensis-carbon felt biohybrid electrode decorated with bacterial cellulose aerogel-electropolymerized anthraquinone to boost cell-electrode interfacial electron transfer. First, a heterologous riboflavin synthesis and secretion pathway is constructed to increase flavin-mediated transmembrane electron transfer. Second, outer membrane c-Cyts OmcF is screened and optimized via protein engineering strategy to accelerate contacted-based transmembrane electron transfer. Third, a S. oneidensis-carbon felt biohybrid electrode decorated with bacterial cellulose aerogel and electropolymerized anthraquinone is constructed to boost the interfacial electron transfer. As a result, the internal resistance decreased to 42 Ω, 480.8-fold lower than that of the wild-type (WT) S. oneidensis MR-1. The maximum power density reached 4286.6 ± 202.1 mW m-2, 72.8-fold higher than that of WT. Lastly, the engineered biohybrid electrode exhibited superior abilities for bioelectricity harvest, Cr6+ reduction, and CO2 reduction. This study showed that enhancing transmembrane and cell-electrode interfacial electron transfer is a promising way to increase the extracellular electron transfer of EAMs.

11.
Carbohydr Polym ; 343: 122459, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174096

RESUMEN

Bacterial cellulose (BC) is a renewable biomaterial that has attracted significant attention due to its excellent properties and wide applications. Komagataeibacter xylinus CGMCC 2955 is an important BC-producing strain. It primarily produces BC from glucose while simultaneously generating gluconic acid as a by-product, which acidifies the medium and inhibits BC synthesis. To enhance glucose uptake and BC synthesis, we reconstructed the phosphoenolpyruvate-dependent glucose phosphotransferase system (PTSGlc) and strengthened glycolysis by introducing heterologous genes, resulting in a recombinant strain (GX08PTS03; Δgcd::ptsHIcrrE. coli::ptsGE. coli::pfkAE. coli). Strain GX08PTS03 efficiently utilized glucose for BC production without accumulating gluconic acid. Subsequently, the fermentation process was systematically optimized. Under optimal conditions, strain GX08PTS03 produced 7.74 g/L of BC after 6 days of static fermentation, with a BC yield of 0.39 g/g glucose, which were 87.41 % and 77.27 % higher than those of the wild-type strain, respectively. The BC produced by strain GX08PTS03 exhibited a longer fiber diameter along with a lower porosity, significantly higher solid content, crystallinity, tensile strength, and Young's modulus. This study is novel in reporting that the engineered PTSGlc-based glucose metabolism could effectively enhance the production and properties of BC, providing a future outlook for the biopolymer industry.


Asunto(s)
Acetobacteraceae , Celulosa , Glucosa , Celulosa/biosíntesis , Celulosa/metabolismo , Celulosa/química , Glucosa/metabolismo , Acetobacteraceae/metabolismo , Acetobacteraceae/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Fermentación , Ingeniería Metabólica/métodos , Gluconacetobacter xylinus/metabolismo , Gluconacetobacter xylinus/genética , Resistencia a la Tracción
12.
J Exp Clin Cancer Res ; 43(1): 220, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113068

RESUMEN

Over the last decade, accumulating evidence has suggested that tumor-associated macrophages (TAMs) play a significant role in the tumor development. This commentary wishes to highlight the findings by You, et al. that M1-like TAMs could cascade a mesenchymal/stem-like phenotype of oral squamous cell carcinoma (OSCC) via the IL6/Stat3/THBS1 feedback loop. These unprecedented findings identified M1-like TAMs-regulated processes as potentially tumor-promotion in the context of OSCC immunomicroenvironment.


Asunto(s)
Macrófagos , Neoplasias de la Boca , Humanos , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Carcinogénesis/inmunología , Microambiente Tumoral , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/inmunología , Animales
13.
J Biotechnol ; 392: 139-151, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39009230

RESUMEN

Automatically finding novel pathways plays an important role in the initial designs of metabolic pathways in synthetic biology and metabolic engineering. Although path-finding methods have been successfully applied in identifying valuable synthetic pathways, few efforts have been made in fusing atom group tracking into building stoichiometry model to search metabolic pathways from arbitrary start compound via Mixed Integer Linear Programming (MILP). We propose a novel method called AFP to find metabolic pathways by incorporating atom group tracking into reaction stoichiometry via MILP. AFP tracks the movements of atom groups in the reaction stoichiometry to construct MILP model to search the pathways containing atom groups exchange in the reactions and adapts the MILP model to provide the options of searching pathways from an arbitrary or given compound to the target compound. Combining atom group tracking with reaction stoichiometry to build MILP model for pathfinding may promote the search of well-designed alternative pathways at the stoichiometric modeling level. The experimental comparisons to the known pathways show that our proposed method AFP is more effective to recover the known pathways than other existing methods and is capable of discovering biochemically feasible pathways producing the metabolites of interest.


Asunto(s)
Ingeniería Metabólica , Redes y Vías Metabólicas , Ingeniería Metabólica/métodos , Biología Sintética/métodos , Algoritmos , Modelos Biológicos , Programación Lineal
14.
Angew Chem Int Ed Engl ; : e202407890, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958602

RESUMEN

Developing novel n-type organic semiconductors is an on-going research endeavour, given their pivotal roles in organic electronics and their relative scarcity compared to p-type counterparts. In this study, a new strategy was employed to synthesize n-type organic semiconductors featuring a fully fused conjugated backbone. By attaching two sets of adjacent amino and formyl groups to the indacenodithiophene-based central cores and triggering a tandem reaction sequence of a Knoevenagel condensation-intramolecular cyclization, DFA1 and DFA2 were realized. The solution-processed organic field effect transistors based on DFA1 exhibited unipolar n-type transport character with a decent electron mobility of ca. 0.10 cm2 V-1 s-1 (ca. 0.038 cm2 V-1 s-1 for DFA2 based devices). When employing DFA1 as a third component in organic solar cells, a high power conversion efficiency of 19.2 % can be achieved in ternary devices fabricated with PM6 : L8-BO : DFA1. This work provides a new pathway in the molecular engineering of n-type organic semiconductors, propelling relevant research forward.

15.
Mater Horiz ; 11(18): 4413-4423, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38946704

RESUMEN

Contrary to previous results, a unique anti-correlation effect of the alkyl chain size on the photovoltaic performance of acceptors was observed. For a centrally-extended acceptor, replacing linear alkyl chains (n-undecyl for CH-BBQ) on the thienothiophene unit with branched ones (2-butyloctyl for CH-BO) leads to a plunge in the power conversion efficiency of organic solar cells (18.12% vs. 11.34% for binary devices), while the largely shortened ones (n-heptyl for CH-HP) bring a surge in performance (18.74%/19.44% for binary/ternary devices). Compared with CH-BO, the more compact intermolecular packing of CH-HP facilitates carrier transport. The characterization of organic field effect transistors and carrier dynamics also echoes the above results. Molecular dynamics simulations indicate that the encounter of the branched alkyl chains and the extended central core hinders the effective interfacial interaction of polymer donors and acceptors, thus deteriorating the device performance. This work suggests that the conventional strategy for alkyl chain engineering of Y-series acceptors might need to be reconsidered in other molecular systems.

16.
J Cancer ; 15(13): 4113-4127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947395

RESUMEN

In the realm of cancer research, particularly hepatocellular carcinoma (HCC), TAR DNA-binding protein (TARDBP) has transitioned from being associated with neurodegenerative diseases to emerging as a significant molecule in oncology due to its aberrant expression in HCC and other malignancies. This shift underlines the versatility of TARDBP and its critical role in tumorigenesis. Our study illuminates TARDBP's universal upregulation across various cancers, indicating its involvement in fundamental oncogenic processes and potential impact on genomic instability. The relationship between TARDBP expression and tumor mutational burden (TMB) across several cancers highlights its influence on a key hallmark of cancer progression. Additionally, TARDBP's interaction with immune and inflammatory factors within the tumor microenvironment, including its association with immune-stimulatory factors and inverse relationship with immune inhibitors, suggests its role in modulating immune evasion. Clinically, TARDBP's aberrant expression correlates with adverse patient outcomes in HCC, making it a promising candidate for therapeutic targeting. The study concludes that TARDBP holds significant potential as a novel therapeutic target in HCC and possibly other malignancies, meriting further exploration to integrate TARDBP-targeted therapies into cancer treatment protocols, thereby advancing the field of precision medicine.

17.
Adv Sci (Weinh) ; : e2402284, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994917

RESUMEN

Although messenger RNA translation is tightly regulated to preserve protein synthesis and cellular homeostasis, chronic exposure to interferon-γ (IFN-γ) in several cancers can lead to tryptophan (Trp) shortage via the indoleamine-2,3-dioxygenase (IDO)- kynurenine pathway and therefore promotes the production of aberrant peptides by ribosomal frameshifting and tryptophan-to-phenylalanine (W>F) codon reassignment events (substitutants) specifically at Trp codons. However, the effect of Trp depletion on the generation of aberrant peptides by ribosomal mistranslation in gastric cancer (GC) is still obscure. Here, it is shows that the abundant infiltrating lymphocytes in EBV-positive GC continuously secreted IFN-γ, upregulated IDO1 expression, leading to Trp shortage and the induction of W>F substitutants. Intriguingly, the production of W>F substitutants in EBV-positive GC is linked to antigen presentation and the activation of the mTOR/eIF4E signaling pathway. Inhibiting either the mTOR/eIF4E pathway or EIF4E expression counteracted the production and antigen presentation of W>F substitutants. Thus, the mTOR/eIF4E pathway exposed the vulnerability of gastric cancer by accelerating the production of aberrant peptides and boosting immune activation through W>F substitutant events. This work proposes that EBV-positive GC patients with mTOR/eIF4E hyperactivation may benefit from anti-tumor immunotherapy.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39073616

RESUMEN

CONTEXT/OBJECTIVE: Fetuin-B is a hepatokine/adipokine implicated in glucose homeostasis and lipid metabolism. We sought to assess whether cord blood fetuin-B levels are altered in gestational diabetes mellitus (GDM) and the association with fetal growth factors and lipids. STUDY DESIGN, POPULATION, AND OUTCOMES: In a nested case-control study of 153 pairs of neonates of mothers with GDM and euglycemic pregnancies in the Shanghai Birth Cohort, we assessed cord blood fetuin-B in relation to fetal growth factors and lipids [high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterols (TC) and triglycerides (TG)]. RESULTS: Cord blood fetuin-B concentrations were higher in the newborns of GDM vs. euglycemic mothers (mean ± SD: 2.35±0.96 vs 2.05±0.73 mg/L, P=0.012), and were positively correlated with LDL (r=0.239, P<0.0001), TC (r=0.230, P=0.0001), insulin-like growth factor-Ⅰ [IGF-Ⅰ (r=0.137, P=0.023)] and IGF-Ⅱ (r=0.148, P=0.014) concentrations. Similar associations were observed adjusting for maternal and neonatal characteristics. CONCLUSIONS: The study is the first to demonstrate that fetuin-B levels are elevated in fetal life in GDM, and that fetuin-B affects lipid metabolic health during fetal life in humans. The secretion of fetuin-B appears to be related to the secretion of insulin-like growth factors (IGF-Ⅰ and IGF-Ⅱ).

20.
Adv Sci (Weinh) ; : e2405116, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39076124

RESUMEN

Micrometer-sized silicon monoxide (SiO) is regarded as a high-capacity anode material with great potential for lithium ion batteries (LIBs). However, the problems of low initial Coulombic efficiency (ICE), poor electrical conductivity, and large volume change of SiO inevitably impede further application. Herein, the vacuum thermal reduced SiOx with amorphous AlPO4 and carbon double-coating layers is used as the ideal anode material in LIBs. The vacuum thermal reduction at low temperature forms fine silicon grains in the internal particles and maintains the external integrity of SiOx particles, contributing to mitigation of the stress intensification and the subsequent design of multifunctional coating. Meanwhile, the innovative introduction of the multifunctional amorphous AlPO4 layer not only improves the ion/electron conduction properties to ensure the fast reversible reaction but also provides a robust protective layer with stable physicochemical characteristics and inhibits the volume expansion effect. The sample of SiOx anode shows an ICE up to 87.6% and a stable cycling of 200 cycles at 1 A g-1 with an initial specific capacity of 1775.8 mAh g-1. In addition, the assembled pouch battery of 1.8 Ah can also ensure a cycling life of over 150 cycles, demonstrating a promising prospect of this optimized micrometer-sized SiOx anode material for industrial applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA