Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Synapse ; 78(5): e22309, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39285628

RESUMEN

After seizures, the hyperactivation of extracellular signal-regulated kinases (ERK1/2) causes mitochondrial dysfunction. Through the guidance of dynamin-related protein 1 (DRP1), ERK1/2 plays a role in the pathogenesis of several illnesses. Herein, we speculate that ERK1/2 affects mitochondrial division and participates in the pathogenesis of epilepsy by regulating the activity of DRP1. LiCl-Pilocarpine was injected intraperitoneally to establish a rat model of status epilepticus (SE) for this study. Before SE induction, PD98059 and Mdivi-1 were injected intraperitoneally. The number of seizures and the latency period before the onset of the first seizure were then monitored. The analysis of Western blot was also used to measure the phosphorylated and total ERK1/2 and DRP1 protein expression levels in the rat hippocampus. In addition, immunohistochemistry revealed the distribution of ERK1/2 and DRP1 in neurons of hippocampal CA1 and CA3. Both PD98059 and Mdivi-1 reduced the susceptibility of rats to epileptic seizures, according to behavioral findings. By inhibiting ERK1/2 phosphorylation, the Western blot revealed that PD98059 indirectly reduced the phosphorylation of DRP1 at Ser616 (p-DRP1-Ser616). Eventually, the ERK1/2 and DRP1 were distributed in the cytoplasm of neurons by immunohistochemistry. Inhibition of ERK1/2 signaling pathways downregulates p-DRP1-Ser616 expression, which could inhibit DRP1-mediated excessive mitochondrial fission and then regulate the pathogenesis of epilepsy.


Asunto(s)
Dinaminas , Flavonoides , Dinámicas Mitocondriales , Pilocarpina , Quinazolinonas , Ratas Sprague-Dawley , Estado Epiléptico , Animales , Dinaminas/metabolismo , Dinaminas/genética , Dinámicas Mitocondriales/fisiología , Dinámicas Mitocondriales/efectos de los fármacos , Masculino , Pilocarpina/toxicidad , Estado Epiléptico/metabolismo , Estado Epiléptico/inducido químicamente , Flavonoides/farmacología , Quinazolinonas/farmacología , Sistema de Señalización de MAP Quinasas/fisiología , Ratas , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Convulsiones/metabolismo , Cloruro de Litio/farmacología , Modelos Animales de Enfermedad , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Fosforilación
2.
Exp Anim ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030240

RESUMEN

Transmembrane protein (TMEM230) is located in secretory/recycling vesicles, including synaptic vesicles in neurons. However, the functional relationship between TMEM230 and epilepsy is still a mystery. The aims of this study were to investigate the expression of TMEM230 in patients with temporal lobe epilepsy (TLE) and two different mice models of chronic epilepsy, and to determine the probable roles of TMEM230 in epilepsy. Our results showed that TMEM230 expression was increased in the temporal neocortex of epileptic patients and the hippocampus and cortex of epileptic mice compared with that in the control tissues. Moreover, TMEM230 was mainly expressed in the neurons in both humans and mice epileptic brain. TMEM230 co-localized with glutamate vesicular transporter 1 (VGLUT-1), but not with vesicular GABA transporter (VGAT). Mechanistically, coimmunoprecipitation confirmed that TMEM230 interacted with VGLUT-1, but not with VGAT in the hippocampus of epileptic mice. Lentivirus mediated overexpression of TMEM230 increased mice susceptibility to epilepsy and behavioural phenotypes of epileptic seizures during the kainite (KA)-induced chronic phase of epileptic seizures and the pentylenetetrazole (PTZ) kindling process, whereas lentivirus-mediated TMEM230 downregulation had the opposite effect. These results shed light on the functions of TMEM230 in neurons, suggesting that TMEM230 may play a critical role in the regulation of epileptic activity via influencing excitatory neurotransmission.

3.
Ibrain ; 7(3): 200-210, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37786793

RESUMEN

Epilepsy is a common neurological disease with various seizure types, complicated etiologies, and unclear mechanisms. Its diagnosis mainly relies on clinical history, but an electroencephalogram is also a crucial auxiliary examination. Recently, brain imaging technology has gained increasing attention in the diagnosis of epilepsy, and conventional magnetic resonance imaging can detect epileptic foci in some patients with epilepsy. However, the results of brain magnetic resonance imaging are normal in some patients. New molecular imaging has gradually developed in recent years and has been applied in the diagnosis of epilepsy, leading to enhanced lesion detection rates. However, the application of these technologies in epilepsy patients with negative brain magnetic resonance must be clarified. Thus, we reviewed the relevant literature and summarized the information to improve the understanding of the molecular imaging application value of epilepsy.

4.
BMC Neurol ; 20(1): 353, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32962663

RESUMEN

BACKGROUND: Dynamic-related protein 1 (Drp1) is a key protein involved in the regulation of mitochondrial fission, and it could affect the dynamic balance of mitochondria and appears to be protective against neuronal injury in epileptic seizures. Equilibrative nucleoside transporter 1 (ENT1) is expressed and functional in the mitochondrial membrane that equilibrates adenosine concentration across membranes. Whether Drp1 participates in the pathogenesis of epileptic seizures via regulating function of ENT1 remains unclear. METHODS: In the present study, we used pilocarpine to induce status epilepticus (SE) in rats, and we used mitochondrial division inhibitor 1 (Mdivi-1), a selective inhibitor to Drp1, to suppress mitochondrial fission in pilocarpine-induced SE model. Mdivi-1administered by intraperitoneal injection before SE induction, and the latency to firstepileptic seizure and the number of epileptic seizures was thereafter observed. The distribution of Drp1 was detected by immunofluorescence, and the expression patterns of Drp1 and ENT1 were detected by Western blot. Furthermore, the mitochondrial ultrastructure of neurons in the hippocampal CA1 region was observed by transmission electron microscopy. RESULTS: We found that Drp1 was expressed mainly in neurons and Drp1 expression was significantly upregulated in the hippocampal and temporal neocortex tissues at 6 h and 24 h after induction of SE. Mitochondrial fission inhibitor 1 attenuated epileptic seizures after induction of SE, reduced mitochondrial damage and ENT1 expression. CONCLUSIONS: These data indicate that Drp1 is upregulated in hippocampus and temporal neocortex after pilocarpine-induced SE and the inhibition of Drp1 may lead to potential therapeutic target for SE by regulating ENT1 after pilocarpine-induced SE.


Asunto(s)
Dinaminas/antagonistas & inhibidores , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Quinazolinonas/farmacología , Estado Epiléptico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Estado Epiléptico/metabolismo
5.
Front Cell Dev Biol ; 8: 722, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850838

RESUMEN

Background: OLFM3 (olfactomedin-3) is a member of the olfactomedin domain family, which has been found to stimulate the formation and adhesion of tight cell connections and to regulate cytoskeleton formation and cell migration. Differences in the gene coding for OLFM3 have been found between patients with epilepsy and controls. However, the exact role of OLFM3 in epilepsy has not been thoroughly investigated. Methods: Biochemical methods were used to assess OLFM3 expression and localization in the cortex of patients with temporal lobe epilepsy and in the hippocampus and cortex of epileptic mice. Electrophysiological recordings were used to measure the role of OLFM3 in regulating hippocampal excitability in a model of magnesium-free-induced seizure in vitro. Behavioral experiments were performed in a pentylenetetrazol (PTZ)-induced seizure model, and electroencephalograms (EEGs) were recorded in the chronic phase of the kainic acid (KA)-induced epilepsy model in vivo. OLFM3 and its interaction with AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor) subunits were analyzed by co-immunoprecipitation. Results: The expression of OLFM3 was increased in the cortex of patients with temporal lobe epilepsy and in the hippocampus and cortex of epileptic mice compared with controls. Interestingly, lentivirus-mediated overexpression of OLFM3 in the hippocampus increased the susceptibility of mice to PTZ-induced seizures, and OLFM3 knockdown had the opposite effect. OLFM3 affected AMPAR currents in a brain-slice model of epileptiform activity induced by Mg2+-free medium. We found that OLFM3 co-immunoprecipitation with GluA1 and GluA2. Furthermore, downregulation or overexpression of OLFM3 in the hippocampus affected the membrane expression of GluA1 and GluA2 in epileptic mice. Conclusion: These findings reveal that OLFM3 may enhance seizure activity by interacting with GluA1 and GluA2, potentially indicating a molecular mechanism for new therapeutic strategies.

6.
J Int Med Res ; 48(8): 300060520947914, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32851899

RESUMEN

Autoimmune epilepsy (AE) refers to epilepsy mediated by autoantibodies or immune cells, and a large proportion of drug-resistant epilepsy cases are classified as AE. AE lacks standardized management guidelines. At present, little research has been conducted on the effectiveness of surgical treatment of AE. This paper reports a patient whose surgical treatment was ineffective before AE was diagnosed and who improved after immunotherapy. A literature review was conducted to examine the progress of surgical treatment of epilepsy, the relationship of temporal lobe epilepsy to neuronal antibodies, surgical and prognostic factors, research progress on the anti-Hu antibody, and treatment of autoimmune encephalitis to provide a clinical reference.


Asunto(s)
Epilepsia Refractaria , Encefalitis , Epilepsia del Lóbulo Temporal , Epilepsia , Anticonvulsivantes/uso terapéutico , Autoanticuerpos , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/tratamiento farmacológico , Epilepsia Refractaria/cirugía , Epilepsia/diagnóstico , Epilepsia/cirugía , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA