Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 333: 122077, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37343912

RESUMEN

Vehicle exhaust and oil fuel evaporation emit volatile organic compounds (VOCs). The differences in VOC compositions and their effects determined using different methods have not been addressed sufficiently. In this study, VOC samples are obtained from single gasoline and diesel vehicle exhausts using a portable emission measurement system, from a tunnel in Yichang City, and from gasoline and diesel evaporation at gas stations. A total of 107 VOCs are analysed. The calculated VOC source profiles (based on VOC source profiles of single-vehicle type and vehicle fleet composition in the tunnel) and the tested source profiles (from a tunnel test) are compared. The results show that gasoline burning can reduce alkenes from a mass fraction of 53.1% (for evaporation) to 3.6% (for burning), as well as increase the mass fraction of alkenes from 1.3% (for diesel evaporation) to 34.0% (for diesel burning). The calculated VOC source profiles differed from the tested VOC source profiles, with a coefficient of divergence of 0.6. Ethane, ethylene, n-undecane, and n-dodecane are used to distinguish VOCs in gasoline and diesel exhausts. Cis-2-butene, 2-methylpentane, m/p-xylene, o-xylene, and n-decane can be used to separate gasoline from diesel. The xylene/ethylbenzene ratios accurately reveal the photochemical age. Gasoline burning increases health risks associated with VOCs compared with gasoline evaporation. Furthermore, it modifies the main contributor to ozone formation potential. This study is expected to facilitate refined VOC source apportionment and studies pertaining to speciated emission inventories.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Gasolina/análisis , Ozono/análisis , Alquenos/análisis , Monitoreo del Ambiente , China
2.
Environ Int ; 158: 107001, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34991261

RESUMEN

Residential coal combustion (RCC) emission exhibited obvious daily variation, while no real-time estimation of air pollutants from RCC has been reported, as the shortages of corresponding activity dataset and emission factors with high time resolution. A real-time monitoring platform for RCC emission was established. Hourly emission factors of 18 typed of TEs from eleven kinds of chunk coals and nine kinds of honeycomb coals burning in China were obtained. The monthly and hourly coal consumption amounts were calculated with reference and our field survey. Then the hourly TEs emission inventories from RCC were established in China. GEOS-Chem and Risk Quotients Models were utilized to map the spatialized health risks of hazardous elements, including the gridded hazard index and carcinogenic risk. The result indicated that the EFs of TEs would be underestimated if the tests only consider flaming conditions. Cu, K, Ca, Zn, and Co were the top five elements from RCC, with corresponding emission amounts as 1397.7, 1054.0, 676.0, 623.5 and 420 tons in 2017, respectively. K, Ti, Fe, Sn, and Sb showed hourly peak values under flaming dominated periods, accounting for 48.2%, 45.9%, 31.8%, 42.8%, and 33.8% of their daily emissions. Other elements (e.g., V, Co, As, Hg and Pb) exhibited higher emissions under smoldering dominated period in nighttime, accounting for 22.2%, 32.9%, 27.6%, 34.7%, and 28.4% of their daily emissions. TEs emission from RCC closely follows the habits of human daily cooking and heating activity. The national HI were lower than the acceptable level (HI ≤ 1) except Sichuan Province (up to 1.2). Higher carcinogenic risks (≥1 × 10-6) occurred in parts of Sichuan, Shanxi, Hunan and Hubei, which were up to 2.0 × 10-5. The high-resolution TEs emission inventories could be useful for future modeling works on the formation and evolution of air pollution and are helpful for human exposure assessment.


Asunto(s)
Contaminantes Atmosféricos , Oligoelementos , Contaminantes Atmosféricos/análisis , China , Carbón Mineral/análisis , Monitoreo del Ambiente , Humanos
3.
Sci Total Environ ; 814: 151950, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-34838559

RESUMEN

Residential coal combustion (RCC) emission demonstrates obvious daily variation, while no real-time estimation of air pollutants from RCC has been reported, as the limitation of hourly activity data and emission factors. With a dilution sampling system, a high-precision electronic balance, and an Aethalometer Model AE33, a real-time monitoring platform for RCC emission was established. Hourly emission factors (EFs) of BC and absorption emission factors (AEFs) of BrC from eleven kinds of chunk coals and nine kinds of honeycomb coals burning in China were obtained. The monthly and hourly coal consumption amounts were calculated with the activity data from literature reviews and a field survey. The first hourly BC and absorption cross section of BrC emission inventories from RCC were established in China. The historical emission trends (2003-2017) indicated that the policy has rapidly controlled the emission of BC and ACSBrC from RCC in urban area (26.7% and 31.8% decreased, respectively in 2013). While in rural areas, their emission continually increased by 1.2% ~ 5.3% until more strict law enacted in 2017. Emissions of BC and ACSBrC in winter seasons were 60.1 Gg and 1064.1 Gm2, which accounted for 54.3% and 55.1% of the total BC and ACSBrC emissions correspondingly. The peak values of hourly emission of BC and ACSBrC (in 370 nm) normally appeared at 19:00-23:00, accounting for 43.0% and 41.5% of their total daily emission. The low emission periods were at cooking times including 7:00, 12:00, and 17:00 of a day and the whole emission of BC and ACSBrC for the three periods accounted for 1.8% and 2.3% of their daily emission. This high-resolution BC and ACSBrC emission inventories can be useful for future modeling works on the formation and evolution of a haze event, the smoke aging and transportation, as well as corresponding climate and human health effects.


Asunto(s)
Contaminantes Atmosféricos , Carbón Mineral , Contaminantes Atmosféricos/análisis , Carbono/análisis , China , Carbón Mineral/análisis , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , Hollín/análisis
4.
Sci Total Environ ; 789: 147966, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34058574

RESUMEN

Accurate source markers, source profiles and species-based emission factors (EFs) are currently the key limitations for source apportionment and emission inventory researches. Fine particles (PM2.5) were collected from stack gases of eight types of stationary sources with a dilution sampling system. The mass percentages and EFs of 89 kinds of chemical species in PM2.5 including water-soluble ions, elements, carbonaceous species and molecular organic species were obtained. Results showed that water-soluble ions (8%-54%) and elements (5%-45%) were the dominant chemical species. Palmitic acid (0.19%-0.62%) and stearic acid (0.21%-0.59%) were the most abundant organic species. PM2.5 source profiles of the eight sources were different from each other with the coefficient of divergence values all higher than 0.4. The addition of organic species could help to further distinguish them. The indicatory chemical components and specific species ratios were obtained by both a statistical equation and randomForest. These indicatory chemical components (e.g. F- for glass factory) and species ratios (e.g. K+/Mg2+ & OC/Mg for pharmaceutical factory) improved the current knowledges of their indicatory performance in source identification of ambient PM2.5. The EFs of PM2.5 from the eight stationary sources ranged from 0.019 to 51.6 kg t-1 of fuel used. The EFs of PM2.5 from the pharmaceutical factory were about 70-2600 times higher than other seven types of sources due to the lack of dust-removing devices. Certain EFs measured in this study were about 10-36,000 times lower than corresponding EFs estimated in previous studies which didn't perform field measurements, indicating the necessity for improving emission inventories continuously. This study contributes to identifying emission sources of PM2.5 especially for subtypes of stationary sources and to establishing species-based emission inventories.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/análisis , Polvo/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Centrales Eléctricas
5.
Environ Sci Technol ; 55(9): 5677-5688, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33874721

RESUMEN

Emissions of light-absorbing black carbon (BC) and organic aerosol (OA) from biomass burning are presented as complex mixtures, which introduce challenges in modeling their absorbing properties. In this study, we chose typical residential wood burning emission and used a novel designed chamber to investigate the early stage evolution of plumes from different burning phases under real ambient conditions. The detailed mixing state between BC and OA was evaluated, on the basis of which optical modeling was performed to achieve a closure of aerosol-absorbing properties. Intensive secondary OA (SOA) formation was observed under solar radiation. OA from flaming conditions showed a higher absorptivity than from smoldering conditions, as OA is mostly internally and externally mixed with BC, respectively. For flaming (smoldering), the imaginary refractive index of OA (kOA) was initially at 0.03 ± 0.01 (0.001) and 0.15 ± 0.02 (0.05 ± 0.02) at λ = 781 and 405 nm, respectively, with a half-decay time of 2-3 h in light but a <40% decrease under dark within 5 h. The production of less-absorbing SOA in the first 1-2 h and possible subsequent photobleaching of chromophores contributed to the decrease of kOA. The enhanced abundance but decreased absorptivity of coatings on BC resulted in a relatively maintainable absorptivity of BC-containing particles during evolution.


Asunto(s)
Contaminantes Atmosféricos , Madera , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Atmósfera , Biomasa , Carbono , Humo , Hollín/análisis , Madera/química
6.
Environ Sci Technol ; 55(3): 1497-1507, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33423493

RESUMEN

Levoglucosan (LG) emitted from non-biomass burning (non-BB) sources has given rise to biased or even unreasonable source identification results when adopting LG as a distinct marker of biomass burning (BB). The estimation of LG emission and its spatiotemporal variation for various sources are the keys to reducing uncertainty. This study first developed a LG emission inventory for China from 25 sub-type sources belonging to eight categories, with a 3 km × 3 km spatial resolution and monthly distribution. The total LG emission in 2014 was 145.7 Gg. Domestic BB and open BB contributed 39.2 and 34.3% of the total emission. Non-BB sources, including municipal solid waste burning (9.7%), firework burning (9.6%), meat cooking (5.4%), domestic coal burning (1.5%), ritual item burning (0.2%), and industrial coal burning (0.1%), contributed to 26.5% of the total emission. LG emission varied spatially and temporally. Non-BB sources have a significant spatiotemporal impact on BB source contributions, even in high BB emission regions or in sowing, harvesting, and winter heating seasons. The local BB contributions have been substantially overestimated by 4.28-369% in previous studies, wherein LG was solely referred to as the BB source. By 2018, LG emission from BB might decrease to 63.9% of its total emission. This high-resolution LG emission inventory can be greatly useful for source identification studies in China. It also supports future research on the modeling of smoke aging and pollution control.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , China , Monitoreo del Ambiente , Glucosa/análogos & derivados , Material Particulado/análisis , Estaciones del Año
7.
Sci Total Environ ; 751: 141741, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32889467

RESUMEN

Source profiles of volatile organic compounds (VOCs) emitted from the evaporation of various fuels, industrial raw materials, processes and products are still limited in China. The impact of ambient temperature on the VOC released from these fugitive emission sources has also been rarely reported. In order to establish VOC source profiles for thirteen volatile emission sources, a sampling campaign was conducted in Central China, and five types of sources were investigated both in winter and summer. The dominant VOC groups varied in different sources, and they were alkanes (78.6%), alkenes (53.1%), aromatics (55.1%), halohydrocarbons (80.7%) and oxygenated VOCs (OVOCs) (76.0%), respectively. Ambient temperature showed different impacts on VOC source profiles and specific species ratios. The mass percentages of halohydrocarbons emitted from color printing and waste transfer station in summer were 42 times and 20 times higher than those in winter, respectively. The mass percentages of OVOCs emitted from car painting, waste transfer station and laundry emission sources were much higher in summer (7.9-27.8%) than those in winter (0.8-2.6%). On the contrary, alkanes from color printing, car painting and waste transfer stations were about 11, 4 and 5 times higher in winter than those in summer, respectively. The coefficient of divergence values for the source profiles obtained in winter and summer ranged in 0.3-0.7, indicating obvious differences of source profiles. Benzene/toluene ratio varied in 0.00-0.76, and it was in the range of 0.02-0.50 in winter and 0.04-0.52 in summer for the same sources, respectively. Hexanal, isobutene, m,p-xylene, toluene, 2-methylacrolein, styrene, 1-hexane and cis-2-butene dominated the ozone formation potentials (OFP). The OFP summer/winter differences were 5-320 times by MIR method and 1-79 times by Propy-Equiv method, respectively. This study firstly gave direct evidence that ambient temperature modified the mass percentages of VOC species obviously. It is important for improving VOC source apportionment and chemical reactivity simulation.

8.
Huan Jing Ke Xue ; 41(3): 1107-1115, 2020 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-32608611

RESUMEN

Wood and economic crops are still widely used in rural areas of China. Although their combustion is an important source of volatile organic compounds (VOCs), study on their emission characteristics is relatively weak. In this study, three kinds of wood (poplar, cedarwood, and citrus branches) and six economic crop straws (soybean stalk, sesame stalk, corn cob, cotton stalk, peanut stalk, and corn stalk) were selected and their burning was simulated in the laboratory. A dilution tunnel system was used to dilute the smoke, and then Tedlar bags were used to collect the smoke. The compositions of 102 VOCs were analyzed by Agilent 7820A/5977E gas chromatography/mass spectrometry. The ozone formation potential (OFP) of VOCs for different types of biomass burning was analyzed. The results indicated that there are differences in the VOC compositions of different types of biomass burning emissions. Ethane (11.1%), trans-2-pentene (15.4%), ethylene (8.3%), and dichloromethane (11.9%) are the main VOCs emitted from poplar and cedarwood burning. Toluene (49.8%) is the most abundant species of VOC emitted from burning of citrus branches. Ethylene (11.8%-17.5%) and acetone (9.2%-14.7%) are the main VOCs components of straw burning. Corn stalks, peanut stalks, and citrus branches have similar VOC source profiles, with the coefficient of divergence less than 0.1. The benzene/toluene ratio for biomass burning emissions obtained in this study and in the literature is in the range of 0.030-6.48. It is arguable that a value higher than 1 indicated the impact of biomass burning. The contributions of alkenens, oxygenated VOCs, and aromatic hydrocarbons to the OFP of biomass burning were 30.6%-80.3%, 6.5%-21.0%, and 3.8%-56.5%, respectively. The components contributing more than 10.0% to the OFP are ethylene, propylene, trans-2-pentene, cis-2-pentene, toluene, and propionaldehyde.

9.
Environ Int ; 142: 105812, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32497934

RESUMEN

Biomass burning (BB) has significant impacts on air quality, climate and human health. In China, the BB emission has changed substantially over the past decades while the multi-year variation held high uncertainty and the driving forces have addressed little attention. Here, this research aimed to conduct a comprehensive and systematic analysis of BB variation in China and provided precise and targeted BB emission reduction suggestions. The moving of high emission for BB from 2003 to 2014 was clearly identified, by the view of reliable emission estimation and anthropogenic impacts. Multiple satellite products, field survey, time varying biomass loading data and measured emission factors were adopted to better estimating BB emission and reducing the uncertainty. Social-economic analysis was added to assess the anthropogenic impacts on high emission variation quantitatively. Results showed that the cumulative BB emissions of OC, EC, CH4, NOX, NMVOC, SO2, NH3, CO, CO2, PM2.5 and PM10 during 2003-2014 were 1.6 × 104, 5.64 × 103, 3.57 × 104, 1.7 × 104, 5.44 × 104, 2.96 × 103, 6.77 × 103, 6.5 × 105, 1.15 × 107, 5.26 × 104 and 6.04 × 104 Gg, respectively. Crop straw burning (in-field and domestic) in northeast China plain (NEP), north China plain (NCP), northern arid and semiarid region and loess plateau were the key sources, averagely contributed 73% for all the pollutants emission. While domestic straw burning and firewood burning in Sichuan basin (SB), Yunnan-Guizhou plateau and southern China were main contributors, averagely accounting for 70% of all the pollutants emission. On regional level, high emissions were mainly found in SB, NCP and NEP. Temporally, high emissions were mainly found in crop sowing harvesting and heating seasons. From 2003 to 2014, the BB emission for different biomass species has changed significantly in different regions. High emission has gradually moved from SB to NCP and NEP. Firewood burning and domestic straw burning emission decreased by 47% and 14% in SB, respectively. In-field straw burning emission increased by 52% and 231% in NCP and NEP respectively and domestic straw burning emission increased by 62% in NEP. Emissions from heating season have decreased while emissions in corn harvest season were continuously increased. Analysis of Environmental kuznets curve, agricultural productivity level, human burning habits, rural energy structure and local control policies revealed the internal human driving strength of the variation for BB emission. The unbalanced development of social economy and the policy bias were primary drivers of limiting the BB management. BB emission will alleviate in NCP and aggravate in NEP. For the further emission reduction, effective measures for corn sources management, straw returning and rural energy utilization should be systematically considered. This research provides a clear evidence for the multi-year variation pattern of BB emissions, which is critical for pollution prediction, air quality modeling and targeted mitigation strategies for the key regions of China.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Biomasa , China , Monitoreo del Ambiente , Humanos , Material Particulado/análisis
10.
Sci Total Environ ; 739: 140000, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32540668

RESUMEN

Wuhan was the first city to adopt the lockdown measures to prevent COVID-19 spreading, which improved the air quality accordingly. This study investigated the variations in chemical compositions, source contributions, and regional transport of fine particles (PM2.5) during January 23-February 22 of 2020, compared with the same period in 2019. The average mass concentration of PM2.5 decreased from 72.9 µg m-3 (2019) to 45.9 µg m-3 (2020), by 27.0 µg m-3. It was predominantly contributed by the emission reduction (92.0%), retrieved from a random forest tree approach. The main chemical species of PM2.5 all decreased with the reductions ranging from 0.85 µg m-3 (chloride) to 9.86 µg m-3 (nitrate) (p < 0.01). Positive matrix factorization model indicated that the mass contributions of seven PM2.5 sources all decreased. However, their contribution percentages varied from -11.0% (industrial processes) to 8.70% (secondary inorganic aerosol). Source contributions of PM2.5 transported from potential geographical regions showed reductions with mean values ranging from 0.22 to 4.36 µg m-3. However, increased contributions of firework burning, secondary inorganic aerosol, road dust, and vehicle emissions from transboundary transport were observed. This study highlighted the complex and nonlinear response of chemical compositions and sources of PM2.5 to air pollution control measures, suggesting the importance of regional-joint control.


Asunto(s)
Contaminantes Atmosféricos/análisis , Infecciones por Coronavirus , Pandemias , Material Particulado/análisis , Neumonía Viral , Betacoronavirus , COVID-19 , Ciudades , Monitoreo del Ambiente , Humanos , SARS-CoV-2 , Emisiones de Vehículos/análisis
11.
Environ Sci Pollut Res Int ; 27(14): 16554-16573, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32128731

RESUMEN

Sub-type source profiles for atmospheric fine particle (PM2.5) were still scare in China, which limited the accurate source identification of it. Fugitive dust (including road dust, soil dust, resuspended dust, and construction dust, etc.) was one type of the most important contributors to PM2.5 and its associated toxic metals held potential threaten to human health. The chemical compositions, sources, and health risks of sub-type fugitive dust deserved an investigation for further accurate control of particles and alleviating human health risks. A total of sixty-five fugitive dust samples were collected in Suzhou, a fast-developing city in southern China, including eleven sub-types of road dust (overpass, main street, collector street, and ordinary street), soil dust (farmland and tree lawn), resuspended dust (site types were corresponding to those of road dust), and construction dust (large construction sites). Chemical analysis of water-soluble ions, elements, and carbonaceous components was carried out to establish the sub-type source profiles of PM2.5 for fugitive dust. Results showed that crustal elements were the most abundant components of fugitive dust, and soil dust was less polluted by anthropogenic activities. High contents of OC and low contents of EC were found in all the eleven types of dust. Equivalent ratios of anions and cations indicated that the fugitive dust was obviously alkaline. The contents of OC and EC in the four types of road dust were higher than those in other types of dust, while there existed differences among the sub-types of road dust. The NO3-/SO42- ratios (0.03-0.09) implied that coal-burning and motor vehicle emission co-existed in Suzhou. Coefficient divergence (CD) values of eleven sub-type source profiles showed that there were certain differences among them, which suggested the possibility of sub-type source identification. Cluster analysis indicated the heavy metals in fugitive dust were mainly from crustal materials, metallurgical manufacturing, vehicle emissions, and industrial activities. The enrichment degree of heavy metals for the four types of road dust was also inconsistent. Heavy metals in road dust and soil dust posed a non-carcinogenic risk to children through direct ingestion, and the non-carcinogenic risk of direct intake of heavy metals was much higher than that of respiratory and skin contact. It was found that the accumulative health risks of heavy metals were higher in densely populated areas, traffic intensive areas, and industrial areas through the spatial analysis. This study firstly discussed the chemical compositions of PM2.5 for eleven sub-types of fugitive dust in a Chinese city and assessed the accumulative health risks of heavy metals, which could be a demonstration for further related researches.


Asunto(s)
Contaminantes Atmosféricos/análisis , Metales Pesados/análisis , Niño , China , Ciudades , Polvo/análisis , Monitoreo del Ambiente , Humanos , Medición de Riesgo
12.
Sci Total Environ ; 703: 135505, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31759719

RESUMEN

Petrochemical industry (PI) is an important emission sector of anthropogenic volatile organic compounds (VOCs). The health impacts of VOCs from PI have caused a wide attention by both scientists and publics. In this study, compositions, sources and health risks of VOCs at a typical petrochemical industrial park along the middle reach of Yangtze River were studied. The total VOC concentrations were in the range of 5.59 to 541 ppbv with a mean value of 54.8 ppbv. Alkanes (41.4 ±â€¯15.7%) were the predominant group, followed by alkenes (19.9 ±â€¯18.3%), OVOCs (14.7 ±â€¯9.26%), halo hydrocarbon (11.2 ±â€¯6.42%), aromatics (8.17 ±â€¯5.08%), and acetylene (4.54 ±â€¯2.80%). Compound-specific health risk results showed that acrolein and 1,3-butadiene had the highest non-carcinogenic risk (expressed by hazard ratio, HR: 22.8) and carcinogenic risk (expressed by lifetime cancer risk, LCR: 6.7 × 10-3), respectively. Positive matrix factorization (PMF) model identified four VOC sources including fuel evaporation, industrial sources, ethylene industry and regional background with the average contributions of 35.6%, 12.0%, 26.5% and 25.9%, respectively. The receptor-originated approach combining the PMF model and conventional methods (HR and LCR) was used to assess the source-specific health risks. The non-cancer risks of four VOC sources were above safe level with regional background contributing most (38.3% or 4.91) to HR. The cancer risks of the four sources were below the tolerable level (<10-4) and regional background also contributed most, with relative contribution of 58.4% (or 10-4.22) to LCR. Our results are conductive to the formulation of countermeasures to reduce human exposure to ambient VOCs at petrochemical industrial parks in China.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Compuestos Orgánicos Volátiles/análisis , China , Industrias
13.
Sci Total Environ ; 694: 133802, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31756794

RESUMEN

Airborne fungi are a primary component of bioaerosols and proved to impact human health and climatic change. Deoxyribonucleic acid (DNA) is the essential component of most living organisms with relatively stable physicochemical properties. Little is known about day-night and pollution-episode differences of DNA mass ratio and fungal community in fine particles (PM2.5) during serious winter haze events in China. Here we collected twenty-nine PM2.5 samples every day and night during an entire winter haze evolution process in a megacity of Central China, Wuhan. DNA extraction and high-throughput sequencing methods were adopted to analyze fungal community. Results showed that mass ratio of DNA in PM2.5 (RD/P %) changed with pollution process and showed significant negative correlations with PM2.5 concentration (r = -0.72, P < 0.05) and temperature (r = -0.74, P < 0.05). RD/P became lower (4.40 × 10-4%) after haze episodes than before (7.16 × 10-4%). RD/P of night-samples (1.98 × 10-4-4.97 × 10-4%) were all lower than those for day-samples (3.05 × 10-4-9.99 × 10-4%) for the same period. The fungal species richness became much lower (76 operational taxonomic units (OTUs)) after haze episodes than before (198 OTUs). The species richness of night-samples (119-537 OTUs) were all higher than those of day-samples (71-198 OTUs) for the same period. The OTUs specially owned by night-samples were also more than those by day-samples. Fungal community diversity showed random variations. The fungal community composition of each sample was classified from phylum to genus level. Pathogenic fungi accounted for 8.60% of the entire fungal community. The significantly enriched fungal taxa in the night-sample group (29 taxa) were also much more than that in the day-sample group (9 taxa), which could explain the higher species richness of airborne fungi community in the night during the haze evolution episodes. These findings may serve as an important reference or inspiration to other aerosol studies focusing on human health and behavior of aerosols in the atmosphere.


Asunto(s)
Aerosoles/análisis , Microbiología del Aire , Monitoreo del Ambiente , Material Particulado/análisis , Atmósfera , Bacterias , China , ADN , Hongos , Estaciones del Año
14.
Environ Sci Pollut Res Int ; 26(31): 31793-31803, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31485941

RESUMEN

Residential coal combustion is one of the main sources of ambient polycyclic aromatic hydrocarbons (PAHs). Updating its emission estimation is limited by the shortages of emission factors, especially for them in different particle sizes and from different combustion conditions. PAH emission factors (EFs) for nine size-segregated particle segments emitted from smoldering and flaming combustion of residential coals (four kinds of raw coals (RCs) and three kinds of honeycomb coal briquettes (HCBs)) were obtained in China, using a dilution sampling system. EFs of PAHs for the flaming and smoldering of HCB ranged from 1.32 to 2.04 mg kg-1 and 0.35 to 5.36 mg kg-1, respectively. The EFs of PAHs for RC flaming combustion varied from 0.50 to 218.96 mg kg-1. About 53.5-96.4% and 47.4-90.9% of PAHs concentrated in PM2.1 and PM1.1, respectively. Different fuel types and combustion conditions strongly affected the PAH EFs. The PAH EF for the RC was 0.3 times that for HCB in Guizhou, which implied that PAH EFs for RC combustion were not always higher than those from HCB burning. For different combustion conditions, the PAH EFs from flaming were more than 2.5 times higher than those from smoldering for HCB except in the Anhui region. Results indicated that current PAH EFs may not be universal, which may bias the establishment of control policies for toxic pollutants emitted from domestic coal burning. On average, 73.2 ± 15.5% of total PAH potential toxicity risks were concentrated in submicron particles. More size-segregated PAH EFs for residential coal combustion should be investigated considering combustion conditions with a uniform sampling method in China.


Asunto(s)
Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , China , Tamaño de la Partícula
15.
Huan Jing Ke Xue ; 39(4): 1502-1511, 2018 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-29964974

RESUMEN

Based on a dilution sampling system and domestic burning tests, size-segregated particles emitted from burning of three kinds of honeycomb coals (in view of flaming and smoldering burning conditions) and four kinds of raw coals, were collected by cascade impactors (FA-3). The contents of V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Sb, and Pb were analyzed to get their emission factors (EFs) in different particle size fractions. Results indicated that:① Zn and Pb dominated the emitted mass of heavy metals from chunk (53.16%-65.76%) and honeycomb (96.08% in 0.43 µm) during the flaming combustion condition. However, the emission of Ni was increased from 30.70% to 52.36% in the smoldering condition. Thus, combustion condition may affect the composition of heavy metals in particle matters. ② In the flaming condition, both chunk and honeycomb emission factors of heavy metals were concentrated under 1.1 µm, while the larger sized particles in the range of 5.8-10 µm were distributed. So, heavy metal components may shift to the larger size of the particles at lower combustion temperatures. ③ Fine particle matters(PM) was divided into three categories based on the size distribution of 11 kinds of heavy metal emission factors. The maximum emission values of As and V fell under the PM size category of 5.8-10 µm. The fourth cycle transition metal elements, such as Cr, Mn, Cu, Ni, and Co, fell in the range of 1.1-2.1 µm and these elements represented similar emission characteristic features. Other elements, such as Pb, Sb, Cd, and Zn, were concentrated in sizes less than 0.43 µm. ④ The additive in the honeycomb during the process may import several kinds of heavy metals and may change the combustion temperature, which remodels the mechanism of heavy metal emission. Thus, honeycomb coal may emit different heavy metals under different combustion conditions.The heavy metal emission mechanism during honeycomb coal combustion needs further investigation and the emission reduction effects (especially of heavy metals) needs to be re-estimated.

16.
Huan Jing Ke Xue ; 39(8): 3524-3534, 2018 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-29998657

RESUMEN

China is one of the most important contributors to the global burden of carbonaceous aerosols, of which domestic coal combustion occupies a large fraction. Uncertainty in the emission factors (EFs) directly influences the accuracy of corresponding emission inventories. In the present study, based on domestic burning tests with a dilution sampling system, nine size-segregated particle classes emitted from the burning of three kinds of honeycomb coals (under flaming and smoldering burning conditions) and four kinds of chunk coals, including bituminous and lignite, were collected via a cascade impactor (FA-3). Organic and elemental carbon (OC and EC, respectively) were analyzed using the thermal-optical method. The EFs of particulate matter (PM), OC, and EC for nine size ranges were obtained. For honeycomb coals, the EFs of OC and EC in PM2.1 were 0.07 g·kg-1 and 0.002 g·kg-1, respectively, under flaming burning conditions and 0.10 g·kg-1 and 0.001 g·kg-1, respectively, under smoldering burning conditions. Carbonaceous particles exhibited higher EFs under flaming burning conditions. For chunk coals, the EFs of OC and EC in PM2.1 were 1.4 g·kg-1 and 0.02 g·kg-1, respectively, which are about one magnitude higher than those for honeycomb coal burning. Particulate matter and its associated carbonaceous components preferred to concentrate in fine particles. The EFs of carbonaceous components peaked at the size of ≤ 0.43 µm and 0.43-0.65 µm for honeycomb coal burning and chunk coal burning, respectively.

17.
Environ Int ; 114: 266-279, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29524922

RESUMEN

Under great efforts in fighting against serious haze problem of China since 2013, decreasing of air pollutants especially for fine particles (PM2.5) has been revealed for several key regions. This study tried to answer whether the reduction of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) was coincident with PM2.5 because of long-term pollution control measures (PCM), and to assess source-oriented health risks associated with inhalation exposure to PAHs. Field measurements were carried out before and after the publishing of local air pollution protection plan for Nanjing, a mega-city in east China. Results indicated that the air quality was substantially improving, with a significant reduction in annual average PM2.5 by 34%, and moreover, PM2.5-bound PAHs significantly reduced by 63% (p < 0.001). The remarkable reduction was mainly attributable to the change of emission sources, compared to the influence of atmospheric circulation patterns, surface meteorological conditions, and atmospheric chemical reaction. Four PAHs sources including coal combustion (CC), petroleum and oil burning (PO), wood burning (WB) and vehicle emission (VE) were identified. On an annual basis, contributions to ambient PM2.5-PAHs from WB, PO, CC and VE sources in the period before the action of control measures were 2.26, 2.20, 1.96 and 5.62 ng m-3, respectively. They reduced to 1.09, 0.37, 1.31 and 1.77 ng m-3 for the four source types, with the reduction percentages as 51, 83, 33 and 68%, respectively. The estimated reduction in lifetime lung cancer risk was around 61%. The study that firstly assessed the health effects of PAHs reduction as a co-benefit raised by air PCM sustained for a long period is believed to be applicable and referential for other mega-cities around the world for assessing the benefits of PCM.


Asunto(s)
Contaminación del Aire/prevención & control , Contaminación del Aire/estadística & datos numéricos , Hidrocarburos Policíclicos Aromáticos/análisis , Conducta de Reducción del Riesgo , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Humanos , Neoplasias Pulmonares/epidemiología , Persona de Mediana Edad , Material Particulado/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA