Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8130, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38584161

RESUMEN

A multi-element synergistic flame retardant with double-bond structure was synthesized and added to epoxy resin (EP) to obtain EP composites with high flame retardant and mechanical properties. The study demonstrated that the DOPO-KhCPA-5 composite, containing 5 wt% of DOPO, exhibits the limiting oxygen index (LOI) value of 32%, indicating a high resistance to combustion. Additionally, it successfully meets the UL-94 V-0 grade, indicating excellent self-extinguishing properties. The DOPO-KhCPA-5 compound exhibited a 48.7% decrease in peak heat release rate (PHRR) and a 7.2% decrease in total heat release (THR) compared to pure EP. The inclusion of double-bonded architectures in the DOPO-KhCPA-5 composites led to a significant enhancement in both the tensile strength and tensile modulus. Specifically, the tensile strength increased by 38.5% and the tensile modulus by 57.9% compared to pure EP. This improvement can be attributed to the formation of a fully interpenetrating network of macromolecular chain structures by DOPO-KhCPA within the EP matrix. This network increased the entanglement between molecular chains, resulting in positive effects on the mechanical properties of the EP. Multi-element of DOPO-KhCPA exhibits a synergistic effect, providing condensed and noncombustible gas-phase flame retardancy. Additionally, the mechanical properties were improved with the introduction of flame retardants due to the good impact of double-bond cross-linking. The effectiveness of DOPO-KhCPA as an additive for developing high-performance EP with significant potential applications has been proven.

2.
Nanotechnology ; 34(48)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37619551

RESUMEN

The Si/FeSi2@C composite material offers several advantages due to its unique design. It effectively combines the high capacity and safety features of the Si negative electrode with FeSi2's stabilizing properties. By incorporating a homogeneous carbon layer, the composite material enhances electrical conductivity and provides structural support, thereby mitigating the detrimental effects of significant volume expansion resulting from repeated insertion and extraction of lithium ions. Furthermore, the composite material contributes to stabilizing the solid-electrolyte interphase (SEI) film, which is a critical factor in battery performance. The improved SEI film stability, combined with the overall enhancement in electronic conductivity, significantly enhances the performance of the negative electrode. Test results demonstrate that the composite, consisting of pyrolyzed polyacrylonitrile and Si/FeSi2nanoparticles, exhibits excellent electrochemical properties. During the first charging cycle, the composite material achieves a specific capacity of 1280 mAh g-1. Impressively, after 200 cycles, the specific capacity of the composite doubles compared to that of the raw material, indicating a remarkable improvement in cycling stability. These findings highlight the positive impact of rational material design on the performance of the Si/FeSi2@C composites.

3.
RSC Adv ; 13(33): 22639-22662, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37502822

RESUMEN

The use of polymer materials is inextricably linked to our manufacturing life. However, most of them are easily combusted in the air and the combustion process generates a large amount of toxic fumes and dangerous smoke. This can result in injuries and property damage, as well as limiting their use. It is essential to enhance the flame-retardant properties and smoke suppression performance by using multiple flame retardants. Metal-based flame retardants have a unique chemical composition. They are environmentally friendly flame retardants, which can impart good smoke suppression, flame retardancy to polymers and further reduce the production of toxic gases. The differences in the compounds formed between the transition metals and the main group metals make them act differently as flame retardants for polymers. As a result, this study presents the research progress and flame-retardant mechanism of flame-retardant polymers for flame retardants from different groups of metals in the periodic table of elements in a systematic manner. In view of the differences between the main group metals and transition metals, the mechanism of their application in flame retardant polymer materials is carefully detailed, as are their distinct advantages and disadvantages. And ultimately, prospects for the development of transition metals and main group metals are outlined. It is hoped that this paper will provide valuable references and insights for scholars in the field.

4.
ACS Omega ; 8(18): 16080-16093, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37179617

RESUMEN

Epoxy resins (EPs) have superior physical and chemical features and are used in a wide range of applications in everyday life and engineering. However, its poor flame-retardant performance has hindered its wide application. Over the past decades of extensive research, metal ions have received increasing attention for their highly effective smoke suppression properties. In this work, we used an "aldol-ammonia condensation" reaction to structure the Schiff base structure, together with grafting using the reactive group on 9,10-dihydro-9-oxa-10-phospha-10-oxide (DOPO). Then, Cu2+ was used to replace Na+ to obtain DCSA-Cu flame retardant with smoke suppression properties. Attractively, DOPO and Cu2+ can collaborate, thus effectively improving EP fire safety. At the same time, the addition of a double-bond initiator at low temperatures allows small molecules to form in situ macromolecular chains through the EP network, enhancing the tightness of the EP matrix. With the addition of 5 wt % flame retardant, the EP shows well-defined fire resistance, and the limiting oxygen index (LOI) reaches 36% with a significant reduction in the values of peak heat release (29.72%). In addition, the glass-transition temperature (Tg) of the samples with in situ formations of macromolecular chains was improved, and the physical properties of EP materials are also retained.

5.
Chem Rec ; 23(6): e202300044, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37070651

RESUMEN

Solid electrolyte lithium batteries are the next generation of advanced energy devices. The incorporation of solid electrolytes can significantly improve the safety issue of lithium-ion batteries. Organic-inorganic composite solid electrolytes (CSE) are promising candidates for solid-state batteries, but their application is mainly limited by low ionic conductivity. Many studies have shown that the architecture of ordered inorganic fillers in CSE can act as fast lithium-ion transfer channels by auxiliary means, thus significantly improving the ionic conductivities. This review summarises the recent advances in CSE with different dimensional inorganic fillers. Various effective strategies for the construction of ordered structures in CSE are then presented. The review concludes with an outlook on the future development of CSE. This review aims to provide researchers with an in-depth understanding of how to achieve ordered architectures in CSE for advanced solid state lithium batteries.


Asunto(s)
Electrólitos , Litio , Conductividad Eléctrica , Suministros de Energía Eléctrica
6.
Polymers (Basel) ; 14(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36559872

RESUMEN

With the recognition of the multiple advantages of sulfonated hydrocarbon-based polymers that possess high chemical and mechanical stability with significant low cost, we employed molecular dynamics simulation to explore the morphological effects of side chain length in sulfonated polystyrene grafted poly(arylene ether sulfone)s (SPAES) proton exchange membranes. The calculated diffusion coefficients of hydronium ions (H3O+) are in range of 0.61-1.15 × 10-7 cm2/s, smaller than that of water molecules, due to the electrical attraction between the oppositely charged sulfonate group and H3O+. The investigation into the radial distribution functions suggests that phase segregation in the SPAES membrane is more probable with longer side chains. As the hydration level of the membranes in this study is relatively low (λ = 3), longer side chains correspond to more water molecules in the amorphous cell, which provides better solvent effects for the distribution of sulfonated side chains. The coordination number of water molecules and hydronium ions around the sulfonate group increases from 1.67 to 2.40 and from 2.45 to 5.66, respectively, with the increase in the side chain length. A significant proportion of the hydronium ions appear to be in bridging configurations coordinated by multiple sulfonate groups. The microscopic conformation of the SPAES membrane is basically unaffected by temperature during the evaluated temperature range. Thus, it can be revealed that the side chain length plays a key role in the configuration of the polymer chain and would contribute to the formation of the microphase separation morphology, which profits proton transport in the hydrophilic domains.

7.
ACS Omega ; 7(42): 37170-37179, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36312400

RESUMEN

Epoxy resins (EPs) have been widely used due to their great physical and chemical properties, but their poor flame retardancy limits their further application. In this work, we synthesized a flame retardant containing nitrile groups and a double bond to improve the flame retardancy of EPs. In this way, multiple cross-linking reactions can occur in the EPs to confer better flame retardancy by a simple heat treatment. The UL-94 vertical combustion test, CCT, and limiting oxygen index (LOI) test were used to characterize the flame retardant properties of the cross-linked flame retardant; the results show that with the 10 wt % addition of cross-linked flame retardant, the thermosets can pass the UL-94 V-0 rating. Meanwhile, the contents reached 20 wt %, and the peak heat release rate decreased 40% compared with neat EP.

8.
Chem Rec ; 22(10): e202200116, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35701099

RESUMEN

The development of solid-state batteries has become one of the most promising directions in rechargeable secondary batteries due to their considerable energy densities and favorable safety. However, solid-state batteries with higher energy density and more durable and stable cycle life should be developed for large-scale energy storage and adaption to the rapidly increasing lithium battery production and sales market. Although inorganic solid electrolytes (ISEs) and composite solid electrolytes (CSEs) are relatively advantageous solid-state electrolytes, they also face severe challenges. This review summarizes the main stability issues related to chemical, mechanical, thermal, and electrochemical aspects faced by ISEs and CSEs. The corresponding state-of-the-art improvement strategies have been proposed, including filling of modified particles, electrolyte pore adjustment, electrolyte internal structure arrangement, and interface modification.

9.
Sci Rep ; 11(1): 17731, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489485

RESUMEN

A hyperbranched phosphorus-containing copper phthalocyanine compound (DOPO-CuPc) was successfully synthesized and used as the flame-retardant additive to prepare flame-retarded epoxy thermosets. The addition of DOPO-CuPc led to a significant enhancement of the flame retardant properties of the epoxy resin. The 15DOPO-CuPc/EP composite obtained a LOI value of 35.8%, and the UL-94 rose from NR to V-0 rating. And the addition of DOPO-CuPc resulted in early decomposition of the epoxy thermoset, but the residual char at 700 °C reached 27.7%. The flame retardant mechanism was further investigated. It was found that DOPO-CuPc could release phosphorus-containing radicals and non-combustible gases in the gas phase to exert gas-phase flame retardant activity. In the condensed phase, the epoxy thermoset formed the expanded honeycomb-like char layer during combustion and the presence of copper phthalocyanine contributed to the stability of the char layer.

10.
Front Chem ; 8: 694, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850683

RESUMEN

Proton exchange membrane fuel cells (PEMFCs) have received considerable interest due to their low operating temperature and high energy conversion rate. However, their practical implement suffers from significant performance challenge. In particular, proton exchange membrane (PEM) as the core component of PEMFCs, have shown a strong correlation between its properties (e.g., proton conductivity, dimensional stability) and the performance of fuel cells. Metal-organic frameworks (MOFs) as porous inorganic-organic hybrid materials have attracted extensive attention in gas storage, gas separation and reaction catalysis. Recently, the MOFs-modified PEMs have shown outstanding performance, which have great merit in commercial application. This manuscript presents an overview of the recent progress in the modification of PEMs with MOFs, with a special focus on the modification mechanism of MOFs on the properties of composite membranes. The characteristics of different types of MOFs in modified application were summarized.

11.
Materials (Basel) ; 13(9)2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384706

RESUMEN

With the increasing emphasis on environmental protection, the development of flame retardants for epoxy resin (EP) has tended to be non-toxic, efficient, multifunctional and systematic. Currently reported flame retardants have been capable of providing flame retardancy, heat resistance and thermal stability to EP. However, many aspects still need to be further improved. This paper reviews the development of EPs in halogen-free flame retardants, focusing on phosphorus flame retardants, carbon-based materials, silicon flame retardants, inorganic nanofillers, and metal-containing compounds. These flame retardants can be used on their own or in combination to achieve the desired results. The effects of these flame retardants on the thermal stability and flame retardancy of EPs were discussed. Despite the great progress on flame retardants for EP in recent years, further improvement of EP is needed to obtain numerous eco-friendly high-performance materials.

12.
Front Chem ; 8: 56, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32133339

RESUMEN

Metal-organic frameworks (MOFs), as newly emerging filler materials for polyelectrolytes, show many compelling intrinsic features, such as variable structural designability and modifiability of proton conductivity. In this manuscript, UiO-66-NH2, a stable MOF with -NH2 functional groups in its ligands, was selected to achieve a high-performance sulfonated poly(arylene ether nitrile)s (SPENs)/UiO-66-NH2-x covalent-ionically cross-linked composite membrane. Simultaneously, the obtained composite membranes displayed excellent thermal stability and dimensional stability. The as-prepared SPEN/UiO-66-NH2-x cross-linked membranes exhibited higher proton conductivity than recast SPENs, which can be attributed to the construction of ionic clusters and well-connected ionic nanochannels along the interface between UiO-66-NH2-x and SPEN matrix via molecular interactions. Meanwhile, the methanol permeability of the SPEN/UiO-66-NH2-x composite membrane had been effectively reduced due to the barrier effect of cross-linking and the addition of UiO-66-NH2-x. The SPEN/UiO-66-NH2-5 composite membrane had the highest selectivity of 6.42 × 105 S·s·cm-3: 14.3-times higher than that of Nafion 117. The preparation of cross-linked UiO-66-NH2/SPEN composite was facile, which provides a new strategy for preparing high performance proton exchange membrane.

13.
Polymers (Basel) ; 11(6)2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31163576

RESUMEN

In order to investigate the effect of crosslinking degree on the water uptake, swelling ratio, and methanol permeability of sulfonated poly(aryl ether nitrile)s (SPENs), the molar content of sulfonated group in bisphenol monomer is fixed at 60% in this work. The properties of sulfonated poly (aryl ether nitrile) with different crosslinking degrees are studied by changing the content of propenyl group in sulfonated poly (aryl ether nitrile)s. The cross-linking reaction of the propenyl groups in the SPENs is cured at 230 °C. All the results show that this method is an effective way to improve the water uptake, swelling ratio, and methanol permeability to meet the application requirements of the SPENs membranes as proton exchange membranes in fuel cells.

14.
Materials (Basel) ; 11(10)2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30347654

RESUMEN

Conductive Poly (3,4-ethylenedioxythiophene) (PEDOT) nanofibers are uniformly deposited on ultrathin graphene oxide (GO) nanosheets via a simple and effective in situ polymerization process under ambient conditions. The as-prepared samples are characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectra, Fourier transforms infrared spectra (FTIR), and electrochemical measurements. The results indicate that the as-obtained PEDOT⁻GO hybrid (GDOT) achieves excellent sodium storage properties. When explored as a new inorganic/polymeric electrode for sodium ion batteries (SIBs), the GDOT exhibits a high reversible capacity (338 mAh g-1), good cycling stability (234 mAh g-1 after 400 cycles), and excellent rate capabilities (e.g., 62 mAh g-1 at 30 A g-1) due to their ultrathin structure as well as conductive network. This easily scale-up-able and effective strategy shows great potential for large-scale energy applications.

15.
Small ; 14(15): e1704065, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29527811

RESUMEN

Heterostructures have attracted increasing attention due to their amazing synergetic effects, which may improve the electrochemical properties, such as good electrical/ionic conductivity, electrochemical activity, and mechanical stability. Herein, novel hierarchical Fe2 O3 @Ni3 Se4 nanotubes are successfully fabricated by a multistep strategy. The nanotubes show length sizes of ≈250-500 nm, diameter sizes of ≈100-150 nm, and wall thicknesses of ≈10 nm. The as-prepared Fe2 O3 @Ni3 Se4 nanotubes with INi:Fe = 1:10 show excellent Li storage properties (897 mAh g-1 high reversible charge capacity at 0.1 A g-1 ), good rate performance (440 mAh g-1 at 5 A g-1 ), and outstanding long-term cycling performance (440 mAh g-1 at 5 A g-1 during the 300th cycle) as an anode material for lithium ion batteries. In addition, the Fe2 O3 @Ni3 Se4 nanotubes with INi:Fe = 1:10 (the atomic ratio between Ni and Fe) show superior electrocatalytic performance toward the oxygen evolution reaction with an overpotential of only 246 mV at 10 mA cm-2 and a low Tafel slope of 51 mV dec-1 in 1 m KOH solution.

16.
Small ; 14(8)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29280276

RESUMEN

Herein, the hydrothermal synthesis of porous ultrathin ternary NiFeV layer double hydroxides (LDHs) nanosheets grown on Nickel foam (NF) substrate as a highly efficient electrode toward overall water splitting in alkaline media is reported. The lateral size of the nanosheets is about a few hundreds of nanometers with the thickness of ≈10 nm. Among all molar ratios investigated, the Ni0.75 Fe0.125 V0.125 -LDHs/NF electrode depicts the optimized performance. It displays an excellent catalytic activity with a modest overpotential of 231 mV for the oxygen evolution reaction (OER) and 125 mV for the hydrogen evolution reaction (HER) in 1.0 m KOH electrolyte. Its exceptional activity is further shown in its small Tafel slope of 39.4 and 62.0 mV dec-1 for OER and HER, respectively. More importantly, remarkable durability and stability are also observed. When used for overall water splitting, the Ni0.75 Fe0.125 V0.125 -LDHs/NF electrodes require a voltage of only 1.591 V to reach 10 mA cm-2 in alkaline solution. These outstanding performances are mainly attributed to the synergistic effect of the ternary metal system that boosts the intrinsic catalytic activity and active surface area. This work explores a promising way to achieve the optimal inexpensive Ni-based hydroxide electrocatalyst for overall water splitting.

17.
Polymers (Basel) ; 11(1)2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30960016

RESUMEN

In this work, a highly selective and efficient polymer adsorbent inspired by a water-soluble sulfonated poly(arylene ether nitrile) (SPEN) was successfully synthesized. Due to the distinct structure of functional carboxyl, sulfonic acid and rigid benzene rings, a facile aluminium (III) ions crosslinking method was employed to fabricate the SPEN-based adsorbents (SPEN-Al). Among the three adsorbents, SPEN-Al-2 exhibited superior adsorption capacities with uniform morphology. Subsequently, the SPEN-Al-2 was selected as the adsorbent for three cationic dyes (rhodamine B (Rh B), neutral red (NR), methylene blue (MB)) and three anionic dyes (orange G (OG), methyl orange (MO), acid fuchsin (AF)), respectively, demonstrating that the adsorbent possessing excellent selectivity toward cationic dyes. Moreover, the dye's adsorption selectivity of SPEN-Al-2 was further certificated in a binary cationic-anionic dyes mixtures (MB/OG and MB/MO) system. Taking MB as a dye model, a series of factors (contact time, concentration, temperature and pH) and adsorption models were systematically investigated in dye adsorption experiments. Results indicated that the adsorption was endothermic and the maximum adsorption capacity of SPEN-Al-2 could reach up to 877.5 mg/g; pseudo-second-model and Langmuir model were fitted to the adsorption kinetics and equilibrium isotherm, respectively, manifesting that SPEN-Al adsorbent was promising in the dyes removing field.

18.
Nanoscale ; 9(39): 14820-14825, 2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-28959816

RESUMEN

Tin disulfide (SnS2) has emerged as a promising anode material for lithium/sodium ion batteries (LIBs/SIBs) due to its unique layered structure, outstanding electrochemical properties and low cost. However, its poor cycling life and time-consuming synthesis as well as low-yield production hinder the practical utilization of nanostructured SnS2. In this work, we demonstrate a simple and reliable dissolution-regeneration strategy to construct a flexible SnS2/sulfur-doped reduced graphene oxide (S-rGO) composite as anodes for LIBs and SIBs, highlighting its mass-production feature. In addition, the robust affinity between SnS2 and S-rGO without interstitial volume is very beneficial for preventing the SnS2 particles from breaking themselves away from the rGO nanosheets into free nanoparticles. As a result, the SnS2/S-rGO composite as anodes delivers high reversible capacities of 1078 mA h g-1 and 564 mA h g-1 (at 0.1 A g-1) for LIBs and SIBs, respectively, and excellent rate capabilities and cycling stability (e.g. 532 mA h g-1 during the 600 cycles at 5.0 A g-1 for LIBs). Our proposed strategy may also possess great potential for the practical application of other electrochemically active metal sulfide composites for energy devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA