Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 239(Pt 1): 117346, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37821069

RESUMEN

A commercialized and widely applied nanofiltration membrane, NF90, was in-situ modified through a surface grafting modification method by using 3-sulfopropyl methacrylate potassium salt and initiators. The effects of water electrical conductivity (EC) and fouling types on membrane separation efficiency were examined before and after membrane modification. Results reveal that both the pristine membrane (PTM) and surface grafting modification membrane (SGMM) had a declining permeate flux and salt (NaCl) removal efficiency but an increasing trend of pharmaceuticals and personal care products (PPCPs) removal with increasing water EC from 250 to 10,000 µs cm-1. However, SGMM exhibited a slightly declining permeate flux but 13%-17% and 1%-42% higher rejection of salt and PPCPs, respectively, compared with PTM, due to electrostatic repulsion and size exclusion provided by the grafted polymer. After sodium alginate (SA) and humic acid (HA) fouling, SGMM had 17%-26% and 16%-32% higher salt rejection and 1%-12% and 1%-51% greater PPCP removal, respectively, compared with PTM due to the additional steric barrier layer contributed by the foulants. The successful grafting and increasing hydrophilicity of the SGMM were confirmed by contact angle analysis, which was beneficial for mitigating membrane fouling. Overall, the proposed in-situ surface grafting modification of NF90 can considerably mitigate organic and biological fouling while raising the rejection of salt and PPCPs at different background water EC, which is beneficial for practical applications in producing clean and high quality water for consumers.


Asunto(s)
Polímeros , Cloruro de Sodio , Membranas , Conductividad Eléctrica , Agua
2.
Membranes (Basel) ; 11(11)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34832133

RESUMEN

This study in-situ modified a commercial nanofiltration membrane, NF90, through the concentration-polymerization-enhanced radical graft polarization method by applying two agents of 3-sulfopropyl methacrylate potassium salt (SPM) and 2-hydroxyethyl methacrylate (HEMA) with different dosages. Surface characterization revealed that the modified membranes became rougher and more hydrophilic compared with the pristine membrane. The modified membranes exhibited considerably enhanced separation performance with 5.8-19.6% higher NaCl rejection and 17.2-19.9% higher pharmaceuticals and personal care products (PPCPs) rejection than the pristine membrane. When treating the feedwater with high silica concentration, the modified membranes exhibited relatively less flux decline with high percentage of reversible fouling, especially the ones modified using a lower monomer concentration (0.01 M SPM and 0.01 M HEMA). Moreover, membrane modification enhanced the PPCP rejection (1.3-5.4%) after silica fouling by mitigating foulant deposition on the membrane surface. The fouling mechanism was confirmed to be intermediate blocking of membrane pores. Therefore, the in-situ modification technique with a low monomer concentration proved to be effective for mitigating silica fouling and improving PPCP rejection, which can be easily performed and cost-effective in practical application.

3.
Membranes (Basel) ; 11(8)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34436355

RESUMEN

Through interfacial polymerization (IP), a polyamide (PA) layer was synthesized on the top of a commercialized polysulfone substrate to form a thin-film composite (TFC) nanofiltration membrane. Graphene oxide (GO) was dosed during the IP process to modify the NF membrane, termed TFC-GO, to enhance oxidant resistance and membrane performance. TFC-GO exhibited increased surface hydrophilicity, water permeability, salt rejection, removal efficiency of pharmaceutical and personal care products (PPCPs), and H2O2 resistance compared with TFC. When H2O2 exposure was 0-96,000 ppm-h, the surfaces of the TFC and TFC-GO membranes were damaged, and swelling was observed using scanning electron microscopy. However, the permeate flux of TFC-GO remained stable, with significantly higher NaCl, MgSO4, and PPCP rejection with increasing H2O2 exposure intensity than TFC, which exhibited a 3.5-fold flux increase with an approximate 50% decrease in salt and PPCP rejection. GO incorporated into a PA layer could react with oxidants to mitigate membrane surface damage and increase the negative charge on the membrane surface, resulting in the enhancement of the electrostatic repulsion of negatively charged PPCPs. This hypothesis was confirmed by the significant decrease in PPCP adsorption onto the surface of TFC-GO compared with TFC. Therefore, TFC-GO membranes exhibited superior water permeability, salt rejection, and PPCP rejection and satisfactory resistance to H2O2, indicating its great potential for practical applications.

4.
Sci Total Environ ; 635: 543-550, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29679826

RESUMEN

In this study, an insitu radical graft polarization technique using monomers of 3-sulfopropyl methacrylate potassium salt (SPM) and 2-hydroxyethyl methacrylate (HEMA) was applied to a commercial nanofiltration membrane (NF90) to improve its removal of six commonly detected pharmaceutical and personal care products (PPCPs) and mitigate organic and biological fouling by humic acid (HA) and sodium alginate (SA). Compared with the virgin membrane, the modified NF90 membrane exhibited considerably improved fouling resistance and an increased reversible fouling percentage, especially for SA+HA composite fouling Moreover, the PPCP removal of the modified NF90 membrane was higher than that of the virgin membrane after SA and SA+HA fouling, respectively. Triclosan and carbamazepine, which are poorly rejected, could be effectively removed by modified membrane after SA or SA+HA fouling. Both monomers modified the membrane surface by increasing the hydrophilicity and decreasing the contact angle. The degree of grafting was quantified using attenuated total reflection Fourier-transform infrared spectroscopy. The mitigation in the fouling was evident from the low quantity of deposit formed on the modified membrane, as observed using scanning electron microscopy. A considerable amount of highly hydrophobic triclosan was adsorbed on the SA-fouled virgin membrane and penetrated through it. By contrast, the adsorption of triclosan was substantially lower in the SPM-modified membrane. After membrane modification, the fouling mechanism changed from solely intermediate blocking to both intermediate blocking and complete blocking after membrane modification. Thus, the in situ radical graft polymerization method effectively reduces organic and biological fouling and provides high PPCP removal, which is beneficial for fouling control and produces permeate of satisfactory quality for application in the field of membrane technology.


Asunto(s)
Cosméticos/análisis , Preparaciones Farmacéuticas/análisis , Ultrafiltración/métodos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Incrustaciones Biológicas , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Artificiales , Polimerizacion
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA