Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(16): 26474-26495, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710508

RESUMEN

Exploring multifunctional surface-enhanced Raman scattering (SERS) substrates with high sensitivity, broadband response property and reliable practicability should be required for ultrasensitive molecular detection in complex environments, which is heavily dependent on the photo-induced charge transfer (PICT) efficiency realized on the desirable nano-architectures. Herein, we introduce ultra-clean ternary Au/Ag/AgCl nanoclusters (NCs) with broadband resonance crossing the visible light to near-infrared region created by one step laser irradiation of mixed metal ion solution. Interestingly, the surface defects and interaction among these unique cluster-like ternary nanostructures would be further enhanced by thermal annealing treatment at 300°C, providing higher broadband SERS activities than the reference ternary nanoparticles under 457, 532, 633, 785, and 1064 nm wavelengths excitation. More importantly, the further promoted SERS activities of the resultant Au/Ag/AgCl NCs with achievable ∼5-fold enhancement than the initial one can be conventionally realized by simplistically declining the temperature from normal 20°C to cryogenic condition at about -196°C, due to the lower temperature-suppressed non-radiative recombination of lattice thermal phonons and photogenerated electrons. The cryogenic temperature-boosted SERS of the resultant Au/Ag/AgCl NCs enables the limit of detection (LOD) of folic acid (FA) biomolecules to be achieved as low as 10-12 M, which is obviously better than that of 10-9 M at room temperature condition. Overall, the smart Au/Ag/AgCl NCs-based broadband SERS sensor provides a new avenue for ultrasensitive biomolecular monitoring at cryogenic condition.

2.
Molecules ; 28(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37049650

RESUMEN

G12 mutations heavily affect conformational transformation and activity of KRAS. In this study, Gaussian accelerated molecular dynamics (GaMD) simulations were performed on the GDP-bound wild-type (WT), G12A, G12D, and G12R KRAS to probe mutation-mediated impacts on conformational alterations of KRAS. The results indicate that three G12 mutations obviously affect the structural flexibility and internal dynamics of the switch domains. The analyses of the free energy landscapes (FELs) suggest that three G12 mutations induce more conformational states of KRAS and lead to more disordered switch domains. The principal component analysis shows that three G12 mutations change concerted motions and dynamics behavior of the switch domains. The switch domains mostly overlap with the binding region of KRAS to its effectors. Thus, the high disorder states and concerted motion changes of the switch domains induced by G12 mutations affect the activity of KRAS. The analysis of interaction network of GDP with KRAS signifies that the instability in the interactions of GDP and magnesium ion with the switch domain SW1 drives the high disordered state of the switch domains. This work is expected to provide theoretical aids for understanding the function of KRAS.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas p21(ras)/genética , Dominio AAA , Mutación , Conformación Molecular
3.
Opt Lett ; 47(3): 670-673, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35103704

RESUMEN

We report an effective strategy to promote the near-infrared surface-enhanced Raman scattering spectroscopy (NIR-SERS) activity by boosting the photon-induced charge transfer (PICT) efficiency at cryogenic temperature. Based on as-prepared Au/Ag nano-urchins (NUs) with abundant surface defects, the extremely low temperature (77 K) can significantly weaken the metallic lattice vibration and reduce the recombination of thermal phonons and photoexcited electrons, then accelerate the migration of energetic electrons. It enables the NIR-SERS detection limit of dye molecules to be achieved at 10-17 M, which is nearly three orders of magnitude better than that at room temperature. The present work provides a new, to the best of our knowledge, approach for ultra-trace NIR-SERS bioanalysis.


Asunto(s)
Espectroscopía Infrarroja Corta , Espectrometría Raman , Recombinación Genética , Temperatura
4.
Chem Commun (Camb) ; 58(5): 653-656, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-34918722

RESUMEN

The defects of a perovskite film were first passivated by two dimensional ZnIn2S4 nanosheets, the non-radiation recombination at interfaces was suppressed and the contact of the perovskite film with water vapour in the air was avoided, resulting in a high efficiency of 20.55%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA