Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 517, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851667

RESUMEN

BACKGROUND: C. Oleifera is among the world's largest four woody plants known for their edible oil production, yet the contribution rate of improved varieties is less than 20%. The species traditional breeding is lengthy cycle (20-30 years), occupation of land resources, high labor cost, and low accuracy and efficiency, which can be enhanced by molecular marker-assisted selection. However, the lack of high-quality molecular markers hinders the species genetic analysis and molecular breeding. RESULTS: Through quantitative traits characterization, genetic diversity assessment, and association studies, we generated a selection population with wide genetic diversity, and identified five excellent high-yield parental combinations associated with four reliable high-yield ISSR markers. Early selection criteria were determined based on kernel fresh weight and cultivated 1-year seedling height, aided by the identification of these 4 ISSR markers. Specific assignment of selected individuals as paternal and maternal parents was made to capitalize on their unique attributes. CONCLUSIONS: Our results indicated that molecular markers-assisted breeding can effectively shorten, enhance selection accuracy and efficiency and facilitate the development of a new breeding system for C. oleifera.


Asunto(s)
Camellia , Fitomejoramiento , Fitomejoramiento/métodos , Camellia/genética , Marcadores Genéticos , Repeticiones de Microsatélite/genética , Variación Genética , Hibridación Genética
2.
BMC Plant Biol ; 23(1): 378, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37528351

RESUMEN

BACKGROUND: Most of Camellia oleifera forests have low fruit yield and poor oil quality that are largely associated with soil fertility. Soil physical and chemical properties interact with each other affecting soil fertility and C. oleifera growing under different soil conditions produced different yield and oil composition. Three main soil types were studied, and redundancy, correlation, and double-screening stepwise regression analysis were used for exploring the relationships between C. oleifera nutrients uptake and soil physical and chemical properties, shedding light on the transport law of nutrient elements from root, leaves, and kernel, and affecting the regulation of fruit yield and oil composition. RESULTS: In the present study, available soil elements content of C. oleifera forest were mainly regulated by water content, pH value, and total N, P and Fe contents. Seven elements (N, P, K, Mg, Cu, Mn and C) were key for kernel's growth and development, with N, P, K, Cu and Mn contents determining 74.0% the yield traits. The transport characteristics of these nutrients from root, leaves to the kernel had synergistic and antagonistic effects. Increasing oil production and unsaturated fatty acid content can be accomplished in two ways: one through increasing N, P, Mg, and Zn contents of leaves by applying corresponding N, P, Mg, Zn foliar fertilizers, while the other through maintaining proper soil moisture content by applying Zn fertilizer in the surface layer and Mg and Ca fertilizer in deep gully. CONCLUSION: Soil type controlled nutrient absorption by soil pH, water content and total N, P and Fe content. There were synergistic and antagonistic effects on the inter-organ transport of nutrient elements, ultimately affecting N, P, K, Cu and Mn contents in kernel, which determined the yield and oil composition of C. oleifera.


Asunto(s)
Camellia , Suelo/química , Fertilizantes/análisis , Nutrientes/análisis , Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA