Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(34): 36389-36397, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39220502

RESUMEN

Lutein (LT) is a natural carotenoid and is widely used for its vision protection and antioxidant activity. However, the long-chain polyene structure makes lutein sensitive to light and oxygen and poses many difficulties in the production, processing, and storage. In addition, the special chemical structure of LT leads to low solubility and bioavailability. In this study, we propose an efficient solution to address these issues. A cocrystal of LT with adipic acid (LT-APC) was obtained for the first time. The cocrystals were fully characterized. After cocrystallization, the melting point of marketed LT was increased. The chemical stability of LT was significantly improved, and the influence of impurities on stability was limited. Dissolution experiments were performed in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) and the cocrystal generated a much higher apparent solubility. To deepen insight into the mechanisms underlying the cocrystal's improved solubility, wettability tests were performed by contact angle determination and film flotation methods. The cocrystal presented better wettability than the marketed LT. Finally, pharmacokinetic studies of marketed LT and its cocrystal were conducted in rats. The results showed that the cocrystal exhibited 3.4 times higher C max and 2.2 times higher AUC at a single dose compared with marketed LT.

2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675449

RESUMEN

Curcumin (CUR) is a natural polyphenolic compound with various pharmacological activities. Low water solubility and bioavailability limit its clinical application. In this work, to improve the bioavailability of CUR, we prepared a new co-crystal of curcumin and L-carnitine (CUR-L-CN) via liquid-assisted grinding. Both CUR and L-CN have high safe dosages and have a wide range of applications in liver protection and animal nutrition. The co-crystal was fully characterized and the crystal structure was disclosed. Dissolution experiments were conducted in simulated gastric fluids (SGF) and simulated intestinal fluids (SIF). CUR-L-CN exhibited significantly faster dissolution rates than those of pure CUR. Hirshfeld surface analysis and wettability testing indicate that CUR-L-CN has a higher affinity for water and thus exhibits faster dissolution rates. Pharmacokinetic studies were performed in rats and the results showed that compared to pure CUR, CUR-L-CN exhibited 6.3-times-higher AUC0-t and 10.7-times-higher Cmax.

3.
Pharmaceutics ; 15(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37896258

RESUMEN

Coenzyme Q10 (CoQ10) exists in two forms, an oxidized form and a reduced form. Ubiquinol is the fully reduced form of CoQ10. Compared to the oxidized form, ubiquinol has a much higher biological absorption and better therapeutic effect. However, ubiquinol has an important stability problem which hampers its storage and formulation. It can be easily transformed into its oxidized form-ubiquinone-even at low temperature. In this work, we designed, synthesized, and characterized a new cocrystal of ubiquinol with vitamin B3 nicotinamide (UQ-NC). Compared to the marketed ubiquinol form, the cocrystal exhibited an excellent stability, improved dissolution properties, and higher bioavailability. The cocrystal remained stable for a long period, even when stored under stressed conditions. In the dissolution experiments, the cocrystal generated 12.6 (in SIF) and 38.3 (in SGF) times greater maximum ubiquinol concentrations above that of the marketed form. In addition, in the PK studies, compared to the marketed form, the cocrystal exhibited a 2.2 times greater maximum total coenzyme Q10 concentration and a 4.5 times greater AUC than that of the marketed form.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA