Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2407070, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39091051

RESUMEN

Single-atom catalysts (SACs) have been increasingly explored in lithium-sulfur (Li-S) batteries to address the issues of severe polysulfide shuttle effects and sluggish redox kinetics. However, the structure-activity relationship between single-atom coordination structures and the performance of Li-S batteries remain unclear. In this study, a P, S co-coordination asymmetric configuration of single atoms is designed to enhance the catalytic activity of Co central atoms and promote d-p orbital hybridization between Co and S atoms, thereby limiting polysulfides and accelerating the bidirectional redox process of sulfur. The well-designed SACs enable Li-S batteries to demonstrate an ultralow capacity fading rate of 0.027% per cycle after 2000 cycles at a high rate of 5 C. Furthermore, they display excellent rate performance with a capacity of 619 mAh g-1 at an ultrahigh rate of 10 C due to the efficient catalysis of CoSA-N3PS. Importantly, the assembled pouch cell still retains a high discharge capacity of 660 mAh g-1 after 100 cycles at 0.2 C and provides a high areal capacity of 4.4 mAh cm-2 even with a high sulfur loading of 6 mg cm-2. This work demonstrates that regulating the coordination environment of SACs is of great significance for achieving state-of-the-art Li-S batteries.

2.
Small ; : e2405159, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101613

RESUMEN

Lithium-sulfur (Li-S) batteries present significant potential for next-generation high-energy-density devices. Nevertheless, obstacles such as the polysulfide shuttle and Li-dendrite growth severely impede their commercial production. It is still hard to eliminate gaps between individual particles on separators that serve as potential conduits for polysulfide shuttling. Herein, the synthesis of a nanoscale thickness and defect-free cross-linked polyamide (PA) layer on a polypropylene (PP) separator is presented through in situ polymerization. The PA modification layer can effectively impede the diffusion of polysulfides with a thickness of only 1.5 nm, as evidenced by the results of cyclic voltammetry (CV) and time-of-flight (TOF) testing. Therefore, the Li/Li symmetric battery assembled with the functional separator exhibits an overpotential of merely 12 mV after 1000 h of cycling under test conditions of 1 mA cm-2-1 mAh cm-2. Furthermore, the capacity degradation rate of the Li-S battery is only 0.06% per cycle over 450 cycles at 1 C, while the Li-S pouch cell retains 87.63% of its capacity after 50 cycles. This work will significantly advance the preparation and application of molecules in Li-S batteries, and it will also stimulate further research on defect-free modification of separators.

3.
Front Nutr ; 9: 959703, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958251

RESUMEN

Dietary intervention with a low glycemic index and full nutritional support is emerging as an effective strategy for diabetes management. Here, we found that the treatment of a novel compound dietary fiber and high-grade protein diet (CFP) improved glycemic control and insulin resistance in streptozotocin-induced diabetic mice, with a similar effect to liraglutide. In addition, CFP treatment ameliorated diabetes-related metabolic syndromes, such as hyperlipidemia, hepatic lipid accumulation and adipogenesis, systemic inflammation, and diabetes-related kidney damage. These results were greatly associated with enhanced gut barrier function and altered gut microbiota composition and function, especially those bacteria, microbial functions, and metabolites related to amino acid metabolism. Importantly, no adverse effect of CFP was found in our study, and CFP exerted a wider arrange of protection against diabetes than liraglutide. Thereby, fortification with balanced dietary fiber and high-grade protein, like CFP, might be an effective strategy for the management and treatment of diabetes.

4.
J Agric Food Chem ; 70(21): 6478-6492, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35583480

RESUMEN

Spermidine, a natural polyamine and physiological autophagy inducer, is involved in various physiological processes. However, the impact and mechanism of spermidine on nonalcoholic steatohepatitis (NASH) remains unclarified. We found that daily spermidine intake was significantly lower in volunteers with liver dysfunction than the healthy controls, and the serum and fecal spermidine levels were negatively correlated with the NASH phenotypes. Spermidine supplementation significantly attenuated hepatic lipid accumulation, insulin resistance, hepatic inflammation, and fibrosis in NASH mice induced by a western diet. The ameliorating effect of spermidine on lipid accumulation might be partly regulated by thyroid hormone-responsive protein (THRSP) signaling and autophagy. Moreover, spermidine altered the profile of hepatic bile acids (BAs) and microbial composition and function. Furthermore, spermidine reversed the progression of hepatic steatosis, inflammation, and fibrosis in mice with preexisting NASH. Therefore, spermidine ameliorates NASH partly through the THRSP signaling and the gut microbiota-mediated metabolism of BAs, suggesting that spermidine might be a viable therapy for NASH.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Animales , Ácidos y Sales Biliares/metabolismo , Fibrosis , Humanos , Inflamación/metabolismo , Metabolismo de los Lípidos , Lípidos/farmacología , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Espermidina/metabolismo , Hormonas Tiroideas/metabolismo
5.
Mol Nutr Food Res ; 66(3): e2100639, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34847296

RESUMEN

SCOPE: The impacts of longevity-promoting probiotic Bifidobacterium animalis subsp. lactis LKM512 (LKM512) on metabolic disease remain unclear. Here, the authors aim to explore the potential of LKM512 on the host physiological function and gut microbiota in high-fat diet-induced obese mice. METHODS AND RESULTS: LKM512 are orally administrated for 12 weeks, and the effects of LKM 512 on systemic inflammation and insulin resistance, as well as gut microbiota, are investigated in high-fat (HF) diet-induced obese mice. LKM512 supplementation ameliorates hepatic lipid accumulation, attenuates hepatic and adipose tissue inflammation, and improves intestinal barrier function. These results are associated with improved insulin sensitivity and metabolic endotoxemia. Furthermore, the colonization of LKM512 induces an increase in polyamine metabolism and production, together with significant alternations in the composition and function of gut microbiota in obese mice, which are correlated with these improved metabolic phenotypes in the host. CONCLUSION: The probiotic strain LKM512 may become a promising strategy to improve obesity and related metabolic disorders.


Asunto(s)
Bifidobacterium animalis , Microbioma Gastrointestinal , Resistencia a la Insulina , Probióticos , Animales , Bifidobacterium/metabolismo , Dieta Alta en Grasa/efectos adversos , Heces/microbiología , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología , Probióticos/farmacología
6.
J Agric Food Chem ; 69(34): 9800-9812, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34404209

RESUMEN

Aging is the most common cause of several neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. The pathological hallmarks of age-dependent neuropathology consist of chronic neuroinflammation, oxidative stress, gliosis, learning disability, and cognitive decline. A novel hydrolyzed bioactive peptide mixture extracted from chicken meat, that is, hydrolyzed chicken extract (HCE) has been previously demonstrated to exert neuroprotective effects in rodents and humans. However, the mechanism of HCE on age-related neurological disorders remains unclear. Herein, we aimed to clarify the impact and mechanism of isolated bioactive components (BCs) from HCE on age-dependent neuroinflammation and cognitive impairment in middle-aged mice. We found that both BC and HCE supplementation ameliorated age-induced memory loss, alleviated hippocampal neuroinflammation and oxidative stress, followed by promoting hippocampal neurogenesis in mice. BC and HCE treatment also ameliorated age-dependent morphological anomalies and alleviated microgliosis and astrogliosis. In parallel, BC and HCE treatment showed a significant decrease in the NF-κB p65 and p38 MAPK signaling, which were associated with the enhancement of antioxidative enzymes activities. Furthermore, BC treatment attenuated the neuroinflammatory phenotypes by the decrease in M1-polarized microglia and the increase in M2-polarized microglia in vivo and in vitro. In addition, we found that cyclo(Phe-Phe), one of the cyclopeptides purified from BC, showed notable anti-inflammatory effects in BV2 cells. Taken together, BC might be used as a dietary supplement for alleviating age-dependent neuropathology in middle-aged individuals.


Asunto(s)
Disfunción Cognitiva , Microglía , Animales , Pollos , Disfunción Cognitiva/tratamiento farmacológico , Lipopolisacáridos , Carne , Ratones , FN-kappa B , Extractos Vegetales
7.
Chemosphere ; 282: 130952, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34082316

RESUMEN

Bisphenol A (BPA) has been found to promote hepatotoxicity, reproductive toxicity, and developmental toxicity. However, the neurotoxicity and mechanism of BPA on cognitive function are still unclear. To that end, eight-week-old adult male and female C57BL/6J mice were exposed to 0.05, 0.5, 5, and 50 mg/kg BPA by dietary supplementation for 22 weeks. BPA exposure impaired learning and memory in male mice, associated with increased neuroinflammation and damaged blood-brain barrier. BPA exposure reduced the tight junctions in the colon, resulting in dysfunction of the gut barrier. The levels of neurotransmitters in the serum, hippocampus, and colon of male mice, including tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid, were all decreased by BPA, together with reduced expression of tryptophan and 5-HT metabolism-related genes. Cecal microbiota analysis revealed that the diversity and composition of the microbiota in male mice were markedly altered by BPA, leading to functional profile changes in the microbial community. These results suggest that the neurotoxicity of BPA in male mice may be partly regulated by the interactions of the microbiota-gut-brain axis. However, BPA has little effect on the cognitive function in female mice, which might be caused by the microbial differences and the role of estrogen receptors.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Compuestos de Bencidrilo , Encéfalo , Cognición , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fenoles , Serotonina
8.
Gut Microbes ; 12(1): 1-19, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33151120

RESUMEN

Obesity is associated with impaired intestinal barrier function and dysbiosis of the gut microbiota. Spermidine, a polyamine that acts as an autophagy inducer, has important benefits in patients with aging-associated diseases and metabolic dysfunction. However, the mechanism of spermidine on obesity remains unclear. Here, we show that spermidine intake is negatively correlated with obesity in both humans and mice. Spermidine supplementation causes a significant loss of weight and improves insulin resistance in diet-induced obese (DIO) mice. These effects are associated with the alleviation of metabolic endotoxemia and enhancement of intestinal barrier function, which might be mediated through autophagy pathway and TLR4-mediated microbial signaling transduction. Moreover, spermidine causes the significant alteration of microbiota composition and function. Microbiota depletion compromises function, while transplantation of spermidine-altered microbiota confers protection against obesity. These changes might partly be driven by an SCFA-producing bacterium, Lachnospiraceae NK4A136 group, which was decreased in obese subjects and subsequently increased by spermidine. Notably, the change of Lachnospiraceae NK4A136 group is significantly correlated with enhanced gut barrier function induced by spermidine. Our results indicate that spermidine supplementation may serve as a viable therapy for obesity.


Asunto(s)
Disbiosis/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Obesidad/tratamiento farmacológico , Espermidina/farmacología , Uniones Estrechas/efectos de los fármacos , Animales , Autofagia/fisiología , Peso Corporal , Células CACO-2 , Línea Celular Tumoral , Clostridiales/metabolismo , Disbiosis/microbiología , Endotoxemia/tratamiento farmacológico , Humanos , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/microbiología , Transducción de Señal , Uniones Estrechas/microbiología , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA