Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(10): 5545-5555, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38428024

RESUMEN

Interfacial solar steam generation for sustainable and eco-friendly desalination and wastewater treatment has attracted much attention. However, costly raw materials and complex preparation processes pose constant challenges to its wide promotion. Herein, a novel, cost-effective, and scalable strategy is presented for preparing solar interface evaporators using industrial waste as a raw material. Modified polyethylene foam evaporators (M-EPEs) are simply prepared by drilling and then hydrophilic modification of industrial waste (EPE-1). M-EPEs not only retain the strong mechanical properties and thermal insulating properties (0.047 W·m-1·K-1) of EPE-1 but also exhibit superhydrophilicity and strong light absorption (over 90%). M-EPEs achieve a high evaporation rate of 1.497 kg·m-2·h-1 and photothermal efficiency of up to 93.8% under 1 kW·m-2 solar illumination. Moreover, it has excellent stability and salt tolerance. Our work addresses the environmental issues of recycling polyethylene waste and provides a facile and efficient strategy for designing low-cost, large-scale solar interface evaporators for desalination.

2.
Waste Manag Res ; 40(9): 1440-1449, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35212588

RESUMEN

Anaerobic digestion, one of the most currently remarkable techniques for biogas production, has provided a method of high organic solid waste disposal. Operating temperature, especially in the winter of northern city, makes biomass degradation less efficient. The microorganisms that take on the role of gas production are greatly affected by temperature. In our study, solar energy was selected for anaerobic digestion and winter was selected as the experimental environment. Anaerobic digestion was performed with solar heating and electric heating separately. Parameters were tested (pH, soluble chemical oxygen demand, total ammonia nitrogen, total volatile fatty acids), and microbial structure was monitored. The volume of methane produced was measured over 60 days. The methane yield differed by 15.92% under different conditions. It is clearly shown that methane yield can be improved by a steady temperature environment. Nevertheless, dominant bacteria and microbial structure did not seem to be much different. This study may provide more energy-saving ideas for winter anaerobic digestion projects in northern regions.


Asunto(s)
Eliminación de Residuos , Energía Solar , Anaerobiosis , Biocombustibles , Reactores Biológicos , Alimentos , Calefacción , Metano , Eliminación de Residuos/métodos , Temperatura
3.
J Environ Sci Health B ; 57(2): 102-113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35037829

RESUMEN

To explore the interaction between the residual antibiotic in animal manure and biological treatment, the effect of enrofloxacin (ENR) on the anaerobic digestion of chicken manure, and biodegradation rate of ENR was studied under the condition of actual residual ENR content of 0, 8, 16 and 32 mg/kg·TS. The results showed that the addition of ENR increased the total biogas production, especially 8 mg/kg·TS promoted the anaerobic reaction obviously, and the corresponding cumulative biogas production was increased by 15.33%. However, in the presence of 32 mg/kg·TS, the biogas production rate was reduced and the peak period of biogas production was delayed. The results of enzyme activities determination and 16S rRNA sequencing showed that ENR had different effects on archaea and bacteria. The residual ENR could promote hydrolysis reactions in the anaerobic system, but could inhibit acetoclastic methanogens, and the relative abundance of Methanosaeta declined by 7.22‒12.41%. The first-order kinetic model showed that the half-life period of ENR in the anaerobic digestion system was 9.16‒10.83 days, and the biodegradation rate exceeded 80% after the treatment. This study can bring important information for the management of animal manure in the future.


Asunto(s)
Estiércol , Microbiota , Anaerobiosis , Animales , Antibacterianos/farmacología , Biocombustibles/análisis , Biocombustibles/microbiología , Reactores Biológicos/microbiología , Pollos , Enrofloxacina , Estiércol/microbiología , Metano/metabolismo , ARN Ribosómico 16S/genética
4.
Environ Sci Pollut Res Int ; 28(11): 13176-13187, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33179190

RESUMEN

Semi-continuous anaerobic fermentation of food waste was carried out using a solar-assisted heat reactor to explore effects of temperature fluctuation and organic loading rate (OLR: 2.0, 4.0, 6.0, 7.0 kg/(m3 day)VS on the reactor performance and microbial community structure. The results showed that the best methane production was achieved when OLR was 6.0 kg/(m3 day)VS because the reactors did not operate stably at 7.0 kg/(m3 day)VS. Compared with fluctuation of fermentation temperature, methane production at stable fermentation temperature increased by 21.72%, but higher power consumption occured. The results of high-throughput sequencing showed that OLR played a decisive role in succession of microbial community structure, while temperature fluctuation was more likely to affect microbial activity. When OLR was lower than 4.0 kg/(m3 day)VS, aceticlastic methanogens Methanosaeta were the dominant bacteria, while at 6.0 kg/(m3 day)VS, relative abundance of hydrogenotrophic methanogens Methanoregula and Methanospirillum increased.


Asunto(s)
Microbiota , Eliminación de Residuos , Anaerobiosis , Reactores Biológicos , Alimentos , Metano , Temperatura
5.
Biomed Res Int ; 2018: 7420656, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29862289

RESUMEN

Ample quantities of solar and local biomass energy are available in the rural regions of northwest China to satisfy the energy needs of farmers. In this work, low-temperature solar thermal collectors, photovoltaic solar power generators, and solar-powered thermostatic biogas digesters were combined to create a heat, electricity, and biogas cogeneration system and were experimentally studied through two buildings in a farming village in northwestern China. The results indicated that the floor heater had the best heating effect. And the fraction of the energy produced by the solar elements of the system was 60.3%. The photovoltaic power-generation system achieved photovoltaic (PV) conversion efficiencies of 8.3% and 8.1% during the first and second season, respectively. The intrinsic power consumption of the system was 143.4 kW·h, and 115.7 kW·h of electrical power was generated by the system in each season. The average volume of biogas produced daily was approximately 1.0 m3. Even though the ambient temperature reached -25°C, the temperature of the biogas digester was maintained at 27°C ± 2 for thermostatic fermentation. After optimization, the energy-saving rate improved from 66.2% to 85.5%. The installation reduced CO2 emissions by approximately 27.03 t, and the static payback period was 3.1 yr. Therefore, the system is highly economical, energy efficient, and beneficial for the environment.


Asunto(s)
Biocombustibles , Biomasa , Electricidad , Energía Solar , China , Composición Familiar
6.
Biomed Res Int ; 2018: 2158205, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29651424

RESUMEN

In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.


Asunto(s)
Carbón Mineral , Calefacción , Modelos Teóricos , Planificación Social , Energía Solar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA