Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Beilstein J Org Chem ; 17: 678-687, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777243

RESUMEN

A novel catalyst-free synthetic approach to 1,2,3-triazolobenzodiazepinones has been developed and optimized. The Ugi reaction of 2-azidobenzaldehyde, various amines, isocyanides, and acids followed by microwave-assisted intramolecular azide-alkyne cycloaddition (IAAC) gave a series of target heterocyclic compounds in moderate to excellent yields. Surprisingly, the normally required ruthenium-based catalysts were found to not affect the IAAC, only making isolation of the target compounds harder while the microwave-assisted catalyst-free conditions were effective for both terminal and non-terminal alkynes.

2.
J Mol Graph Model ; 90: 51-58, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31009934

RESUMEN

Thermoresponsive poly(N-vinylcaprolactam) (PVCL) has received growing interest due to a temperature-induced phase transition, which switches its solubility in aqueous solutions. However, the lower critical solution temperature (LCST) of PVCL is greatly influenced by the molecular weight, morphology and the environment. Therefore, despite of numerous experimental studies of the thermal response of PVCL, a driving force and a molecular origin of conformation transitions in solution remain far less studied. To get a better understanding of the coil-to-globule conformation transition of PVCL in aqueous solution, we examined the structure and conformation dynamics of a single-chain PVCL30 in a temperature range of 280-360 K by using atomistic molecular dynamics (MD) simulations. The united-atom GROMOS G53a6 force field was re-parameterized and fine-tuned by DFT calculations to reproduce the experimental LCST transition of PVCL. Our MD model reproduces the LCST transition of PVCL30 to occur within a temperature range of 34.6-38.5°. MD simulation results suggest a significant difference between the hydration state of the carbonyl group of PVCL below and above the LCST threshold. The analysis of the number of hydrogen bonds of PVCL with water molecules demonstrates that dehydration of the polymer plays an important role and drives the temperature-induced polymer collapse. Finally, the developed MD model and FF parameters were successfully tested for large-scale systems, such as mixture PVCL30 oligomer and single-chain PVCL816 polymer, respectively.


Asunto(s)
Caprolactama/análogos & derivados , Polímeros/química , Agua/química , Caprolactama/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Molecular , Simulación de Dinámica Molecular , Solubilidad , Temperatura , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA