Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 12(3)2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32156039

RESUMEN

Graft copolymers of chitosan with cellulose ether have been obtained by the solid-state reactive mixing of chitin, sodium hydroxide and hydroxyethyl cellulose under shear deformation in a pilot twin-screw extruder. The structure and composition of the products were determined by elemental analysis and IR spectroscopy. The physicochemical properties of aqueous solutions of copolymers were studied as a function of the composition, and were correlated to the mechanical characteristics of the resulting films to assess the performance of new copolymers as coating materials, non-woven fibrous materials or emulsifiers for interface stabilization during the microparticle fabrication process.

2.
Materials (Basel) ; 13(3)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973191

RESUMEN

Plasma treatment is one of the most promising tools to control surface properties of materials tailored for biomedical application. Among a variety of processing conditions, such as the nature of the working gas and time of treatment, discharge type is rarely studied, because it is mainly fixed by equipment used. This study aimed to investigate the effect of discharge type (direct vs. alternated current) using air as the working gas on plasma treatment of poly(ethylene terephthalate) films, in terms of their surface chemical structure, morphology and properties using X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and contact angle measurements. The effect of the observed changes in terms of subsequent chitosan immobilization on plasma-treated films was also evaluated. The ability of native, plasma-treated and chitosan-coated films to support adhesion and growth of mesenchymal stem cells was studied to determine the practicability of this approach for the biomedical application of poly(ethylene terephthalate) films.

3.
Mar Drugs ; 17(1)2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30634710

RESUMEN

The crustacean processing industry produces large quantities of waste by-products (up to 70%). Such wastes could be used as raw materials for producing chitosan, a polysaccharide with a unique set of biochemical properties. However, the preparation methods and the long-term stability of chitosan-based products limit their application in biomedicine. In this study, different scale structures, such as aggregates, photo-crosslinked films, and 3D scaffolds based on mechanochemically-modified chitosan derivatives, were successfully formed. Dynamic light scattering revealed that aggregation of chitosan derivatives becomes more pronounced with an increase in the number of hydrophobic substituents. Although the results of the mechanical testing revealed that the plasticity of photo-crosslinked films was 5⁻8% higher than that for the initial chitosan films, their tensile strength remained unchanged. Different types of polymer scaffolds, such as flexible and porous ones, were developed by laser stereolithography. In vivo studies of the formed structures showed no dystrophic and necrobiotic changes, which proves their biocompatibility. Moreover, the wavelet analysis was used to show that the areas of chitosan film degradation were periodic. Comparing the results of the wavelet analysis and X-ray diffraction data, we have concluded that degradation occurs within less ordered amorphous regions in the polymer bulk.


Asunto(s)
Materiales Biocompatibles , Quitosano/química , Ingeniería de Tejidos , Animales , Conformación de Carbohidratos , Quitosano/análogos & derivados , Ensayo de Materiales , Porosidad , Ratas , Ratas Wistar , Resistencia a la Tracción , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA