Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37687121

RESUMEN

MXenes-based materials are considered to be one of the most promising electrode materials in the field of sodium-ion batteries due to their excellent flexibility, high conductivity and tuneable surface functional groups. However, MXenes often have severe self-agglomeration, low capacity and unsatisfactory durability, which affects their practical value. The design and synthesis of advanced heterostructures with advanced chemical structures and excellent electrochemical performance for sodium-ion batteries have been widely studied and developed in the field of energy storage devices. In this review, the design and synthesis strategies of MXenes-based sodium-ion battery anode materials and the influence of various synthesis strategies on the structure and properties of MXenes-based materials are comprehensively summarized. Then, the first-principles research progress of MXenes-based sodium-ion battery anode materials is summarized, and the relationship between the storage mechanism and structure of sodium-ion batteries and the electrochemical performance is revealed. Finally, the key challenges and future research directions of the current design and synthesis strategies and first principles of these MXenes-based sodium-ion battery anode materials are introduced.

2.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36142839

RESUMEN

Sr2TiO4 is a promising photocatalyst for antibiotic degradation in wastewater. The photocatalytic performance of pristine Sr2TiO4 is limited to its wide bandgap, especially under visible light. Doping is an effective strategy to enhance photocatalytic performance. In this work, Nb/N co-doped layered perovskite Sr2TiO4 (Sr2TiO4:N,Nb) with varying percentages (0−5 at%) of Nb were synthesized by sol-gel and calcination. Nb/N co-doping slightly expanded the unit cell of Sr2TiO4. Their photocatalytic performance towards antibiotic (tetracycline) was studied under visible light (λ > 420 nm). When Nb/(Nb + Ti) was 2 at%, Sr2TiO4:N,Nb(2%) shows optimal photocatalytic performance with the 99% degradation after 60 min visible light irradiation, which is higher than pristine Sr2TiO4 (40%). The enhancement in photocatalytic performance is attributed to improving light absorption, and photo-generated charges separation derived from Nb/N co-doping. Sr2TiO4:N,Nb(2%) shows good stability after five cycles photocatalytic degradation reaction. The capture experiments confirm that superoxide radical is the leading active species during the photocatalytic degradation process. Therefore, the Nb/N co-doping in this work could be used as an efficient strategy for perovskite-type semiconductor to realize visible light driving for wastewater treatment.


Asunto(s)
Niobio , Aguas Residuales , Antibacterianos , Compuestos de Calcio , Catálisis , Luz , Óxidos , Superóxidos , Tetraciclina , Titanio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA