Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.393
Filtrar
1.
Int J Biol Sci ; 20(11): 4532-4550, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247808

RESUMEN

Adenosine receptor-mediated signaling, especially adenosine A2A receptor (A2AR) signaling, has been implicated in wound healing. However, the role of endothelial cells (ECs) in A2AR-mediated wound healing and the mechanism underlying this effect are still unclear. Here, we showed that the expression of A2AR substantially increased after wounding and was especially prominent in granulation tissue. The delaying effects of A2AR knockout (KO) on wound healing are due mainly to the effect of A2AR on endothelial cells, as shown with A2AR-KO and EC-A2AR-KO mice. Moreover, the expression of c-Ski, which is especially prominent in CD31-positive cells in granulation tissue, increased after wounding and was decreased by both EC-A2AR KO and A2AR KO. In human microvascular ECs (HMECs), A2AR activation induced EC proliferation, migration, tubule formation and c-Ski expression, whereas c-Ski depletion by RNAi abolished these effects. Mechanistically, A2AR activation promotes the expression of c-Ski through an ERK/CREB-dependent pathway. Thus, A2AR-mediated angiogenesis plays a critical role in wound healing, and c-Ski is involved mainly in the regulation of angiogenesis by A2AR via the ERK/CREB pathway. These findings identify A2AR as a therapeutic target in wound repair and other angiogenesis-dependent tissue repair processes.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Ratones Noqueados , Receptor de Adenosina A2A , Cicatrización de Heridas , Cicatrización de Heridas/fisiología , Cicatrización de Heridas/genética , Animales , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2A/genética , Ratones , Humanos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Endoteliales/metabolismo , Neovascularización Fisiológica , Transducción de Señal , Sistema de Señalización de MAP Quinasas/fisiología , Proliferación Celular/genética , Movimiento Celular/genética , Angiogénesis
2.
Eur J Histochem ; 68(3)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252535

RESUMEN

The nucleotide binding oligomerization domain containing 2 (NOD2) protein and its ligand N-acetyl muramyl dipeptide (MDP) are crucially involved in Crohn's disease (CD). However, the mechanism by which NOD2 signaling is regulated in CD patients remains unclear. Ubiquitin specific protease (USP14) is a deubiquitylase that plays an important role in immunity. This study aimed to investigate the mechanism by which UPS14 regulates NOD2 induced inflammatory response in CD and inflammatory bowel diseases (IBD). Our results showed that USP14 protein and mRNA levels in intestinal tissues of CD patients were significantly higher than those in healthy controls. In addition, USP14 was upregulated in IBD mouse model. While treatment with MDP, TNF-α or the Toll-like receptor 1/2 agonist Pam3CSK4 all led to significantly higher mRNA levels of TNF-α, IL-8 and IL-1ß in THP-1 cells, pretreatment with USP14 inhibitor IU1 could stimulate further upregulation of TNF-α, IL-8 and IL-1ß. In particular, MDP promoted the activation of JNK, ERK1/2 and p38 as well as NF-kB in THP-1 cells, and IU1 significantly enhanced the MDP-induced activation of these proteins without effects on USP14 protein level. Furthermore, the JNK inhibitor sp600125, ERK1/2 inhibitor U0126 or P38 MAPK inhibitor PD169316 significantly decreased the mRNA levels of TNF-α, IL-8 and IL-1ß in THP-1 cells stimulated by both IU1 and MDP. In conclusion, our findings suggest that USP14 could inhibit MDP-induced activation of MAPK signaling and the inflammation response involved in IBD, and that USP14 is a potential therapeutic target for IBD.


Asunto(s)
Enfermedad de Crohn , Proteína Adaptadora de Señalización NOD2 , Ubiquitina Tiolesterasa , Regulación hacia Arriba , Enfermedad de Crohn/metabolismo , Humanos , Proteína Adaptadora de Señalización NOD2/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Animales , Ubiquitina Tiolesterasa/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Masculino , Inflamación/metabolismo , Femenino , Adulto , Ratones Endogámicos C57BL , Células THP-1
3.
Angew Chem Int Ed Engl ; : e202410109, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234799

RESUMEN

Although gapped grain boundaries have often been observed in bulk and nanosized materials, and their crucial roles in some physical and chemical processes have been confirmed, their acquisition at ultrasmall nanoscale presents a significant challenge. To date, they had not been reported in metal nanoparticles smaller than 2 nm owing to the difficulty in characterization and the high instability of grain boundary (GB) atoms. Herein, we have successfully developed a synthesis method for producing a novel chiral nanocluster Au78(TBBT)40 (TBBT = 4-tert-butylphenylthiol) with a 26-atom gapped and rotated GB. This nanocluster was precisely characterized using single-crystal X-ray crystallography and mass spectrometry. Additionally, an offset atomic defect linked to the peripheral Au(TBBT)2 staple was found in the structure. Comparing it to similarly face-centered cubic-structured Au36(TBBT)24, Au44(TBBT)28, Au52(TBBT)32, Au92(TBBT)44, and ~5 nm nanocrystals, the bridging Au78(TBBT)40 nanocluster exhibits higher catalytic activity in the reduction of CO2 to CO. This enhanced activity is well interpreted using density functional theory calculations and X-ray photoelectron spectroscopy analysis, highlighting the influence of GBs and point defects on the properties of metal nanoclusters.

4.
J Fish Biol ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235098

RESUMEN

In fish species, there is limited analysis of signature transcriptome profiles at the single-cell level in gonadal cells. Here, the molecular signatures of distinct ovarian cell categories in adult Nile tilapia (Oreochromis niloticus) were analysed using single-nucleus RNA sequencing (snRNA-seq). We identified four cell types (oogonia, oocytes, granulosa cell, and thecal cell) based on their specifically expressed genes and biological functions. Similarly, we found some key pathways involved in ovarian development that may affect germline-somatic interactions. A cell-to-cell communication network between the distinct cell types was constructed. We found that the bidirectional communication is mandatory for the development of germ cells and somatic cells in fish ovaries, and the granulosa cells and thecal cells play a central regulating role in the cell network in fish ovary. Additionally, we identified some novel candidate marker genes for various types of ovarian cells and also validated them using in situ hybridization. Our work reveals an ovarian atlas at the cellular and molecular levels and contributes to providing insights into oogenesis and gonad development in fish.

5.
Mycoscience ; 65(1): 1-11, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239117

RESUMEN

Viruses are genetic elements that parasitize self-replicating cells. Therefore, organisms parasitized by viruses are not limited to animals and plants but also include microorganisms. Among these, viruses that parasitize fungi are known as mycoviruses. Mycoviruses with an RNA genome persistently replicate inside fungal cells and coevolve with their host cells, similar to a cellular organelle. Within host cells, mycoviruses can modulate various fungal characteristics and activities, including pathogenicity and the production of enzymes and secondary metabolites. In this review, we provide an overview of the mycovirus research field as introduction to fungal researchers. Recognition of all genetic elements in fungi aids towards better understanding and control of fungi, and makes fungi a significant model system for studying microorganisms containing multiple genetic elements.

6.
Front Pharmacol ; 15: 1457780, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239657

RESUMEN

Introduction: The prevalence of male infertility has been increasing globally, necessitating the search for safe and nontoxic active compounds to alleviate reproductive dysfunction. Although the precise mechanism remains unknown, Cynomorium songaricum Rupr. (CS) extract has protective effects on the reproductive system. The effect of C. songaricum Rupr. flavonoids (CSF) on reproductive injury and testicular mesenchymal stem cell viability in male mice and TM3 cells was investigated. Methods: We explored the possible association between these effects and the testosterone (T) synthesis pathway. Mice were administered cyclophosphamide to induce reproductive damage, followed by CSF administration. Body mass and organ index were recorded. Pathological changes in T and the epididymis were observed using hematoxylin-eosin staining. ELISA measured the serum levels of T, luteinizing hormone (LH), gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), and estradiol (E2) in mice. Fructose and zinc ion levels in the seminal plasma were measured. TM3 cells were treated with Bisphenol A (BPA) and different concentrations of CSF, followed by proliferative evaluations using the CCK-8 assay and T and LH level assessments using ELISA. Furthermore, the expression of steroidogenic enzyme genes and proteins was investigated using western blotting and RT-PCR. Results: CSF exhibited a notable reduction in reproductive damage and improved pathological changes in testicular and epididymal tissues. CSF group demonstrated substantially higher levels of seminal plasma fructose and zinc ions; markedly elevated serum levels of T, LH, GnRH, and FSH; and lower levels of E2 than those of the model group. Intracellular T content and secretion of T and LH increase with CSF while effectively mitigating BPA-induced damage to TM3 cells. CSF group exhibited substantially higher gene and protein expression of steroidogenic enzymes than those of the model group, both in vivo and in vitro. CSF ameliorates reproductive impairment by enhancing the expression of pivotal enzymes involved in synthesizing T. Discussion: CSF ameliorates cyclophosphamide-induced reproductive impairment and bisphenol A-induced TM3 cell damage in mice by regulating sex hormone levels in the Hypothalamic-Pituitary-Gonadal Axis (HPG axis) and upregulating the expression of steroidogenic enzymes. Therefore, CS is a potential treatment for male reproductive impairment.

7.
J Cancer Res Clin Oncol ; 150(9): 413, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244518

RESUMEN

PURPOSE: Non-small cell lung cancer (NSCLC) is a highly fatal malignancy. The Kirsten rat sarcoma viral oncogene (KRAS) gene profoundly impacts patient prognosis. This study aims to explore the correlation between KRAS mutation subtypes, clinical data, and the impact of these subtypes on immunotherapy. MATERIALS AND METHODS: Tumor samples from 269 NSCLC patients at the Affiliated Cancer Hospital of Xinjiang Medical University were analyzed. Patients received first- or second-line therapy without targeted therapy. Molecular and clinical data were used to analysis KRAS mutation subtypes and treatment outcomes. RESULTS: KRAS mutations predominantly included G12C, G12D, and G12V subtypes. TP53 had the highest mutation frequency among KRAS mutations, followed by MST1, STK11, and KMT2C. Gender differences were noted among KRAS mutation subtypes, with G12C and G12V mutations prevalent in males, while G12D mutations were less common among males. Smokers exhibited varied KRAS mutation subtypes, with G12C and G12V prevalent in smokers and G12D in nonsmokers. KRAS mutations were mainly in lung adenocarcinoma. TTF-1 and PD-L1 expression differed significantly among KRAS mutations. Patients with G12C and G12V mutations showed higher TMB levels and better immunotherapy outcomes compared to those without KRAS mutations. Conversely, patients with G12D mutations had poorer immunotherapy responses. CONCLUSIONS: KRAS mutation subtypes exhibit distinct clinical and molecular characteristics and varying responses to immunotherapy. G12C and G12V mutations correlate with better immunotherapy outcomes, while G12D mutations are associated with poorer responses.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inmunoterapia , Neoplasias Pulmonares , Mutación , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Masculino , Proteínas Proto-Oncogénicas p21(ras)/genética , Femenino , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/inmunología , Persona de Mediana Edad , Pronóstico , China/epidemiología , Anciano , Inmunoterapia/métodos , Adulto , Anciano de 80 o más Años , Biomarcadores de Tumor/genética
8.
J Leukoc Biol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226137

RESUMEN

Pathogenic CD8+T cells play an essential role in neuroinflammation and neural injury, which leads to the progression of inflammatory neurological disorders. Thus, blocking the infiltration of CD8+T cells is necessary for the treatment of neuroinflammatory diseases. Our previous study demonstrated that Astragalus polysaccharides (APS) could significantly reduce the infiltration of CD8+T cells in experimental autoimmune encephalomyelitis (EAE) mice. However, the mechanism by which APS suppress CD8+T cell infiltration remains elusive. In this study, we further found that APS could reduce the CD8+T cell infiltration in EAE and lipopolysaccharide (LPS)-induced neuroinflammatory model. Furthermore, we established the mouse brain endothelial cell (bEnd.3) inflammatory injury model by interleukin-1ß (IL-1ß) or LPS in vitro. The results showed that APS treatment downregulated the expression of vascular cell adhesion molecule1 (VCAM1) to decrease the adhesion of CD8+T cells to bEnd.3 cells. APS also upregulated the expression of zonula occluden-1 (ZO-1) and vascular endothelial cadherin (VE-cadherin) to reduce the trans-endothelial migration of CD8+T cells. The PI3K/AKT signaling pathway might mediate this protective effect of APS on bEnd.3 cells against inflammatory injury. In addition, we demonstrated the protective effect of APS on the integrity of brain endothelial cells in an LPS-induced neuroinflammatory model. In summary, our results indicate that APS can reduce peripheral CD8+T cell infiltration via enhancing the barrier function of brain endothelial cells, it may be a potential for the prevention of neuroinflammatory diseases.

9.
Photodiagnosis Photodyn Ther ; 49: 104304, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39226754

RESUMEN

BACKGROUND: Acne vulgaris is a chronic inflammatory skin disease involving the pilosebaceous unit. OBJECTIVE: To assess the efficacy and safety of a chlorin e6 derivative-mediated photodynamic therapy (STBF-PDT) in the treatment of mild to moderate acne patients. METHODS: In this prospective patient single-blind randomized split-face controlled study, patients diagnosed with mild to moderate acne were treated with four sessions of STBF-PDT on one-half of the face, while the other half were treated with the same dose of red-light treatment without photosensitizer. Follow-up assessment including the skin lesion clearance rate, facial fluorescence scattering spots on VISIA Porphyrins mode, and skin physiological parameters was conducted before and after treatment as well as 2 and 4 weeks after the final treatment. RESULTS: A total of 26 patients were recruited, of which 22 patients completed this study. STBF-PDT is significantly effective in improving lesions in patients with acne. The clearance rate of total lesions was 67.42±8.51 % in the STBF-PDT group and 41.05±11.97 % in the control group 4 weeks after the treatment (P < 0.001). The average clearance rate of inflammatory lesions was 84.41±7.13 % in the STBF-PDT group and 50.10±13.91 % in the control group, with a statistically significance (P < 0.0001). The skin sebum of the STBF-PDT side was significantly lower than that on the control side. There was no obvious adverse reaction especially no pain or reactive acne. CONCLUSION: STBF-PDT may be a safe and effective treatment for mild to moderate acne and can significantly inhibit sebum secretion.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39223992

RESUMEN

BACKGROUND: Rotational atherectomy (RA) remains an integral tool for the treatment of severe coronary calcified lesions despite emergence of newer techniques. We aimed to evaluate the contemporary clinical practices and outcomes of RA in China. METHODS: The Rota China Registry (NCT03806621) was an investigator-initiated, prospective, multicenter registry based on China Rota Elite Group. Consecutive patients treated with RA were recruited. A pre-designed, standardized protocol was recommended for the RA procedure. The primary safety endpoint was major adverse cardiovascular events (MACE: composite of cardiac death, myocardial infarction, or ischemia-driven target lesion revascularization) at 30 days. The primary efficacy endpoint was procedural success. RESULTS: Between July 2018 and December 2020, 980 patients were enrolled at 19 sites in China. Mean patient age was 68.4 years, and 61.4% were men. Radial access was used in 79.1% patients, and 32.7% procedures were guided by intravascular imaging. A total of 22.6% procedures used more than 1 burr, and the maximal burr size was ≥1.75 mm in 24.4% cases, with burr upsizing in 19.3% cases, achieving a final burr-to-artery ratio of 0.52. Procedural success was achieved in 91.1% of patients, and the rate of 30-day and 1-year MACE was 4.9% and 8.2%, respectively. Multivariable analysis identified the total lesion length (HR 1.014, 95% CI: 1.002-1.027; p = 0.021) as predictor of 30-day MACE, and renal insufficiency (HR 1.916, 95% CI: 1.073-3.420; p = 0.028) as predictor of 1-year MACE. CONCLUSIONS: In this contemporary prospective registry in China, the use of RA was effective in achieving high procedural success rate with good short- and long-term outcomes in patients with severely calcified lesions.

11.
Bioconjug Chem ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225485

RESUMEN

Electrostatic self-assembly between negatively charged nucleic acids and cationic materials is the basis for the formulation of the delivery systems. Nevertheless, structural disintegration occurs because their colloidal stabilities are frequently insufficient in a hostile biological environment. To overcome the sequential biological barriers encountered during transcellular gene delivery, we attempted to use in situ polymerization onto plasmid DNA (pDNA) with a variety of functional monomers, including N-(3-aminopropyl)methacrylate, (aminopropyl)methacrylamide hydrochloride, 1-vinylimidazole, and 2-methacryloyloxyethylphosphorylcholine and N,N'-bis(acryloyl) cystamine. The covalently linked monomers could polymerize into a network structure on top of pDNA, providing excellent structural stability. Additionally, the significant proton buffering capacity of 1-vinylimidazole is expected to aid in the release of pDNA payloads from acidic and digestive endolysosomes. In addition, the redox-mediated cleavage of the disulfide bond in N,N'-bis(acryloyl)cystamine allows for the selective cleavage of the covalently linked network in the cytosolic microenvironment. This is due to the high intracellular level of glutathione, which promotes the liberation of pDNA payloads in the cell interiors. The proposed polymerization strategies resulted in well-defined nanoscale pDNA delivery systems. Excellent colloidal stabilities were observed, even when incubated in the presence of high concentrations of heparin (10 mg/mL). In contrast, the release of pDNA was confirmed upon incubation in the presence of glutathione, mimicking the intracellular microenvironment. Cell transfection experiments verified their efficient cellular uptake and gene expression activities in the hard-transfected MCF-7 cells. Hence, the polymerization strategy used in the fabrication of covalently linked nonviral gene delivery systems shows promise in creating high-performance gene delivery systems with diverse functions. This could open new avenues in cellular microenvironment engineering.

12.
Nano Lett ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225486

RESUMEN

Energetic carriers generated by localized surface plasmon resonance (LSPR) provide an efficient way to drive chemical reactions. However, their dynamics and impact on surface reactions remain unknown due to the challenge in observing hot holes. This makes it difficult to correlate the reduction and oxidation half-reactions involving hot electrons and holes, respectively. Here we detect hot holes in their chemical form, Ag(I), on a Ag surface using surface-enhanced Raman scattering (SERS) of SO32- as a hole-specific label. It allows us to determine the dynamic correlations of hot electrons and holes. We find that the equilibrium of holes is the key factor of the surface chemistry, and the wavelength-dependent plasmonic chemical anode refilling (PCAR) effect plays an important role, in addition to the LSPR, in promoting the electron transfer. This method paves the way for visualizing hot holes with nanoscale spatial resolution toward the rational design of a plasmonic catalytic platform.

13.
J Chem Phys ; 161(9)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39225530

RESUMEN

The adsorption of polymer-grafted nanoparticles at interfaces is a problem of fundamental interest in physics and soft materials. This adsorption behavior is governed by the interplay between interaction potentials and entropic effects. Here, we use molecular dynamics simulations and umbrella sampling methods to study the adsorption behavior of a Janus-like homopolymer-grafted nanoparticle at fluid-fluid interfaces. By calculating the potential of the mean force as the particle moves from fluid A to the interface, the adsorption energy Ea can be obtained. When two homopolymer chains with types A and B are grafted to the opposite poles of the particle, Ea shows a scaling behavior with respect to chain length N: Ea ∝ N0.598. This is determined by the interactions between polymers and fluids. The enthalpy dominates, and the entropy effects mainly come from the rotational entropy loss of the polymer-grafted nanoparticle at interfaces, which disfavors the stabilization of particles at interfaces. When the grafted polymer number m is large, the adsorption energy exhibits a linear dependence on m. While the enthalpy dominates the behavior, the entropy becomes significant at a larger chain length of N = 15, where the configurational entropy of the polymer chains dominates the entropy of the system. The globule-coil transition occurs when polymers move from poor solvents to good solvents, increasing the configurational entropy and favoring the stabilization of particles at interfaces. Our study provides novel insights into the stabilization mechanism of polymer-grafted nanoparticles at interfaces and reveals the stabilization mechanism favored by the configurational entropy of grafted polymer chains.

14.
J Cell Biol ; 223(11)2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39283311

RESUMEN

Autophagy plays a crucial role in cancer cell survival by facilitating the elimination of detrimental cellular components and the recycling of nutrients. Understanding the molecular regulation of autophagy is critical for developing interventional approaches for cancer therapy. In this study, we report that migfilin, a focal adhesion protein, plays a novel role in promoting autophagy by increasing autophagosome-lysosome fusion. We found that migfilin is associated with SNAP29 and Vamp8, thereby facilitating Stx17-SNAP29-Vamp8 SNARE complex assembly. Depletion of migfilin disrupted the formation of the SNAP29-mediated SNARE complex, which consequently blocked the autophagosome-lysosome fusion, ultimately suppressing cancer cell growth. Restoration of the SNARE complex formation rescued migfilin-deficiency-induced autophagic flux defects. Finally, we found depletion of migfilin inhibited cancer cell proliferation. SNARE complex reassembly successfully reversed migfilin-deficiency-induced inhibition of cancer cell growth. Taken together, our study uncovers a new function of migfilin as an autophagy-regulatory protein and suggests that targeting the migfilin-SNARE assembly could provide a promising therapeutic approach to alleviate cancer progression.


Asunto(s)
Autofagia , Moléculas de Adhesión Celular , Proliferación Celular , Lisosomas , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Proteínas R-SNARE , Humanos , Proteínas R-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/metabolismo , Proteínas Qc-SNARE/genética , Lisosomas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/genética , Autofagosomas/metabolismo , Células HeLa , Línea Celular Tumoral , Unión Proteica , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , Fusión de Membrana , Proteínas Qa-SNARE
15.
J Med Internet Res ; 26: e51564, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283676

RESUMEN

BACKGROUND: Hand function assessment heavily relies on specific task scenarios, making it challenging to ensure validity and reliability. In addition, the wide range of assessment tools, limited and expensive data recording, and analysis systems further aggravate the issue. However, smartphones provide a promising opportunity to address these challenges. Thus, the built-in, high-efficiency sensors in smartphones can be used as effective tools for hand function assessment. OBJECTIVE: This review aims to evaluate existing studies on hand function evaluation using smartphones. METHODS: An information specialist searched 8 databases on June 8, 2023. The search criteria included two major concepts: (1) smartphone or mobile phone or mHealth and (2) hand function or function assessment. Searches were limited to human studies in the English language and excluded conference proceedings and trial register records. Two reviewers independently screened all studies, with a third reviewer involved in resolving discrepancies. The included studies were rated according to the Mixed Methods Appraisal Tool. One reviewer extracted data on publication, demographics, hand function types, sensors used for hand function assessment, and statistical or machine learning (ML) methods. Accuracy was checked by another reviewer. The data were synthesized and tabulated based on each of the research questions. RESULTS: In total, 46 studies were included. Overall, 11 types of hand dysfunction-related problems were identified, such as Parkinson disease, wrist injury, stroke, and hand injury, and 6 types of hand dysfunctions were found, namely an abnormal range of motion, tremors, bradykinesia, the decline of fine motor skills, hypokinesia, and nonspecific dysfunction related to hand arthritis. Among all built-in smartphone sensors, the accelerometer was the most used, followed by the smartphone camera. Most studies used statistical methods for data processing, whereas ML algorithms were applied for disease detection, disease severity evaluation, disease prediction, and feature aggregation. CONCLUSIONS: This systematic review highlights the potential of smartphone-based hand function assessment. The review suggests that a smartphone is a promising tool for hand function evaluation. ML is a conducive method to classify levels of hand dysfunction. Future research could (1) explore a gold standard for smartphone-based hand function assessment and (2) take advantage of smartphones' multiple built-in sensors to assess hand function comprehensively, focus on developing ML methods for processing collected smartphone data, and focus on real-time assessment during rehabilitation training. The limitations of the research are 2-fold. First, the nascent nature of smartphone-based hand function assessment led to limited relevant literature, affecting the evidence's completeness and comprehensiveness. This can hinder supporting viewpoints and drawing conclusions. Second, literature quality varies due to the exploratory nature of the topic, with potential inconsistencies and a lack of high-quality reference studies and meta-analyses.


Asunto(s)
Mano , Teléfono Inteligente , Humanos , Mano/fisiopatología , Mano/fisiología , Masculino , Femenino , Enfermedad de Parkinson/fisiopatología , Telemedicina/instrumentación , Anciano
16.
iScience ; 27(9): 110721, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39262798

RESUMEN

Stapokibart (CM310) is a humanized IL-4Rα monoclonal antibody currently undergoing phase 3 trials for type 2 inflammatory diseases. In contrast to dupilumab, which bound exclusively to human IL-4Rα, stapokibart demonstrated cross-species reactivity to IL-4Rα from human, cynomolgus monkey, and rat. Stapokibart exhibited comparable blocking activity to dupilumab. Epitope mapping revealed that stapokibart bound to distinct sites on IL-4Rα compared to dupilumab. In vitro assays showed that stapokibart was comparable or numerically superior in blocking IL-4Rα-mediated signaling compared to dupilumab. In vivo studies further demonstrated that stapokibart effectively inhibited the progression of type 2 inflammation. Pharmacokinetic studies revealed a circulating half-life of approximately 298-351 h in cynomolgus monkeys and 55-142 h in rats for stapokibart. Toxicity studies indicated a favorable safety profile in cynomolgus monkeys and rats. The preclinical evaluation of stapokibart supports its clinical development.

17.
Inorg Chem ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268867

RESUMEN

A zinc-organic hybrid (1) with multifunctional room temperature phosphorescence (RTP) was synthesized. 1 presents light/force-sensitive RTP properties due to the photochromic behavior from gray to light yellow and the transition from crystalline to amorphous state, respectively. Furthermore, inkless printing and information encryption models were successfully constructed to prove their widespread application prospect.

18.
Sci Prog ; 107(3): 368504241269433, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39285767

RESUMEN

Tesla valves are widely used in the field of fluid control. To study the hydraulic performance of straight-through Tesla valves in forward and reverse flow, 16 straight-through Tesla valves with diverse blade parameters were designed in this paper, and hydraulic loss tests were carried out in forward and reverse flow under different working conditions. The results show that the hydraulic loss increases with the increasing working flow rate in forward and reverse flow; at the identical flow rate, the reverse loss is higher than the forward loss. Both the hydraulic loss through the valve and the unidirectional conductivity of the valve increase with increasing blade length, pitch, and number of blades, but too long of a length results in weakened unidirectional conductivity. The hydraulic loss increases with the increase of blade angle, and the unidirectional conductivity decreases with the increase of blade angle. When the blades are arranged in perfect symmetry, the hydraulic loss through the valve is maximum, and the valve has the best unidirectional conductivity.

19.
Adv Mater ; : e2409369, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39285844

RESUMEN

Catalytic conversion of lithium polysulfides (LiPSs) is a crucial approach to enhance the redox kinetics and suppress the shuttle effect in lithium-sulfur (Li-S) batteries. However, the roles of a typical heterogenous catalyst cannot be easily identified due to its structural complexity. Compared with the distinct sites of single atom catalysts (SACs), each active site of single site catalysts (SSCs) is identical and uniform in their spatial energy, binding mode, and coordination sphere, etc. Benefiting from the well-defined structure, iron phthalocyanine (FePc) is covalently clicked onto CuO nanosheet to prepare low spin-state Fe SSCs as the model catalyst for Li-S electrochemistry. The periodic polarizability evolution of Fe-N bonding is probed during sulfur redox reaction by in situ Raman spectra. Theoretical analysis shows the decreased d-band center gap of Fe (Δd) and delocalization of dxz/dyz after the axial click confinement. Consequently, Li-S batteries with Fe SSCs exhibit a capacity decay rate of 0.029% per cycle at 2 C. The universality of this methodological approach is demonstrated by a series of M SSCs (M = Mn, Co, and Ni) with similar variation of electronic configuration. This work provides guidance for the design of efficient electrocatalysis in Li-S batteries.

20.
Heliyon ; 10(17): e37164, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286107

RESUMEN

In order to explore the self-priming characteristics of the self-priming pump at the mobile pump truck, this paper established a complete three-dimensional circulatory piping system including the self-priming pump, tank, valves, inlet pipe and outlet pipe. The UDF(User Defined Functions) was used to realize the acceleration-constant speed operation process of the impeller, thus reflecting the actual changing state of the rotational speed. Based on the VOF(Volume Of Fluid) multiphase flow model and the Realizable k-ε turbulence model, a coupled numerical calculation of unsteady incompressible viscous flow was conducted for its self-priming process. The results show that the self-priming process of the pump can be roughly divided into four stages: the rapid suction stage, the shock exhaust stage, the rapid exhaust period and the pump residual gas discharge stage. The proportion of each stage in the total self-priming time showed an increasing trend. During the rapid suction stage, the water level in the vertical section of the inlet pipe showed a slow and then fast-rising pattern. During the shock exhaust stage, the average gas-phase volume fraction in the volute is lower than that of the impeller, and the gas content at the volute outlet is lower than that of the impeller inlet. The region at the inlet and outer edge of the impeller consistently experience significant energy losses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA