Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39066107

RESUMEN

This paper presents an innovative approach towards space-ground integrated communication systems by combining terrestrial cellular networks, UAV networks, and satellite networks, leveraging advanced slicing technology. The proposed architecture addresses the challenges posed by future user surges and aims to reduce network overhead effectively. Central to our approach is the introduction of a marginal mobile station (MS)-assisted network resource allocation decision architecture. Building upon this foundation, we introduce the DP-DQN model, an enhanced decision-making algorithm tailored for MSs in dynamic network environments. Furthermore, this study introduces a feedback mechanism to ensure the accuracy and adaptability of the marginalization model over time. Through extensive simulations and experimental validations, our DP-DQN-based edge decision method demonstrates substantial potential in alleviating core network overhead while improving success access ratios compared to conventional methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA