Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.438
Filtrar
1.
Int J Biol Macromol ; 279(Pt 3): 135324, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39241996

RESUMEN

Wound healing in diabetic patients is often complicated by issues like inflammation, infection, bleeding, and fluid retention. To tackle these challenges, it is essential to create hydrogel dressings with anti-inflammatory, antibacterial, and antioxidative properties. This study aimed to synthesize Phlorizin-Liposomes (PL) through the thin-film dispersion method and integrate them into an oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMCS) hydrogel scaffold, resulting in an OSA/CMCS/PL (PLOCS) composite hydrogel via a Schiff base reaction. Characterization of the composite was performed using FTIR, TEM, and SEM techniques. The research assessed the swelling behavior, antibacterial effectiveness, and biocompatibility of the PLOCS composite hydrogel, while also investigating how PLOCS facilitates diabetic wound healing. The results demonstrated that PLOCS effectively controls drug release, possesses favorable swelling and degradation characteristics, and shows significant antioxidative properties along with in vitro biocompatibility. Histological analysis confirmed that PLOCS supports the proliferation of healthy epithelial tissue and collagen production. Western blotting indicated that PLOCS diminishes inflammation by inhibiting the TLR4/NF-κB/MyD88 pathway and activates Nrf2 to boost wound healing, increasing the levels of antioxidative enzymes such as HO-1, NQO1, and GCLC. In summary, PLOCS presents a promising new option for advanced wound dressings aimed at treating diabetic ulcers.

2.
Heliyon ; 10(16): e35856, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224354

RESUMEN

Human immunodeficiency virus (HIV) infection has evolved into an established global pandemic over the past four decades; however, despite massive research investment globally, the precise underlying mechanisms which are fundamental to HIV-related pathogenesis remain unclear. Single cell ribonucleic acid (RNA) sequencing methods are increasingly being used for the identification of specific cell-type transcriptional changes in HIV infection. In this scoping review, we have considered information extracted from fourteen published HIV-associated single-cell RNA sequencing-related studies, hoping to throw light on the underlying mechanisms of HIV infection and pathogenesis, and to explore potential candidate biomarkers for HIV disease progression and antiviral treatment. Generally, HIV positive individuals tend to manifest disturbances of frequency of multiple cellular types, and specifically exhibit diminished levels of CD4+ T-cells and enriched numbers of CD8+ T-cells. Cell-specific transcriptional changes tend to be linked to cell permissiveness, hyperacute or acute HIV infection, viremia, and cell productivity. The transcriptomes of CD4+ T-cell and CD8+ T-cell subpopulations are also observed to change in HIV-positive diabetic individuals, spontaneous HIV controllers, individuals with high levels of HIV viremia, and those in an acute phase of HIV infection. The transcriptional changes seen in B cells, natural killer (NK) cells, and myeloid dendritic cells (mDCs) of HIV-infected individuals demonstrate that the humoral immune response, antiviral response, and immune response regulation, respectively, are all altered following HIV infection. Antiretroviral therapy (ART) plays a crucial role in achieving immune reconstitution, in improving immunological disruption, and in mitigating immune system imbalances in HIV-infected individuals, while not fully restoring inherent cellular transcription to levels seen in HIV-negative individuals. The preceding observations not only illustrate compelling advances in the understanding of HIV-associated immunopathogenesis, but also identify specific cell-type transcriptional changes that may serve as potential biomarkers for HIV disease monitoring and therapeutic targeting.

3.
Carbohydr Polym ; 345: 122585, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227125

RESUMEN

Chemical crosslinking is a method widely used to enhance the mechanical strength of biopolymer-based scaffolds. Polysaccharides are natural and biodegradable carbohydrate polymers that can act as crosslinking agents to promote the formation of scaffolds. Compared to synthetic crosslinking agents, Polysaccharide-based crosslinking agents have better biocompatibility for cell adhesion and growth. Traditional Chinese medicine has special therapeutic effects on various diseases and is rich in various bioactive ingredients. Among them, polysaccharides have immune regulatory, antioxidant, and anti-inflammation effects, which allow them to not only act as crosslinking agents but endow the scaffold with greater bioactivity. This article focuses on the latest developments of polysaccharide-based crosslinking agents for biomedical scaffolds, including hyaluronic acid, chondroitin sulfate, dextran, alginate, cellulose, gum polysaccharides, and traditional Chinese medicine polysaccharides. Also, we provide a summary and prospects on the research of polysaccharide-based crosslinking agents.


Asunto(s)
Materiales Biocompatibles , Reactivos de Enlaces Cruzados , Polisacáridos , Bases de Schiff , Andamios del Tejido , Polisacáridos/química , Polisacáridos/farmacología , Reactivos de Enlaces Cruzados/química , Andamios del Tejido/química , Bases de Schiff/química , Bases de Schiff/farmacología , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos/métodos , Animales , Ácido Hialurónico/química , Ácido Hialurónico/farmacología
4.
Artículo en Inglés | MEDLINE | ID: mdl-39283475

RESUMEN

OBJECTIVE: This study leveraged data from 11 independent international diabetes models to evaluate the impact of unrelated future medical costs on the outcomes of health economic evaluations in diabetes mellitus. METHODS: Eleven models simulated the progression of diabetes and occurrence of its complications in hypothetical cohorts of individuals with type 1 (T1D) or type 2 (T2D) diabetes over the remaining lifetime of the patients to evaluate the cost effectiveness of three hypothetical glucose improvement interventions versus a hypothetical control intervention. All models used the same set of costs associated with diabetes complications and interventions, using a United Kingdom healthcare system perspective. Standard utility/disutility values associated with diabetes-related complications were used. Unrelated future medical costs were assumed equal for all interventions and control arms. The statistical significance of changes on the total lifetime costs, incremental costs and incremental cost-effectiveness ratios (ICERs) before and after adding the unrelated future medical costs were analysed using t-test and summarized in incremental cost-effectiveness diagrams by type of diabetes. RESULTS: The inclusion of unrelated costs increased mean total lifetime costs substantially. However, there were no significant differences between the mean incremental costs and ICERs before and after adding unrelated future medical costs. Unrelated future medical cost inclusion did not alter the original conclusions of the diabetes modelling evaluations. CONCLUSIONS: For diabetes, with many costly noncommunicable diseases already explicitly modelled as complications, and with many interventions having predominantly an effect on the improvement of quality of life, unrelated future medical costs have a small impact on the outcomes of health economic evaluations.

5.
Int J Biol Macromol ; : 135563, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284470

RESUMEN

Intrahepatic cholangiocellular carcinoma (ICC) is a challenging malignancy marked by subtle early symptoms and a high mortality rate, making effective diagnostic markers crucial for early detection and improved patient outcomes. Currently, the conventional diagnosis of ICC is not easily distinguishable from Hepatocellular Carcinoma (HCC) and lacks highly specific and sensitive diagnostic markers. Protein glycosylation, pivotal in biological processes, shows promise for cancer biomarkers due to its association with disease progression. This study aims to develop a novel biomarker discovery framework for ICC utilizing site-specific quantitative N-glycoproteomics to overcome the limitations of existing diagnostic approaches. Employing a tandem mass tag (TMT)-based quantitative analysis, we profiled serum glycoproteins from ICC, HCC, and control cohorts at site-specific glycosylation level. The identified markers underwent further validation in an independent cohort using label-free quantitative methods. Ultimately, we identified five site-specific N-glycans on haptoglobin (HP) as potential biomarkers (AUC > 0.9) for distinguishing ICC from HCC. This finding represents a considerable advance over traditional biomarkers, highlighting the significance of protein glycosylation alterations in ICC pathogenesis. This research, therefore, sets a new precedent for biomarker discovery in ICC, with potential applications in other cancers characterized by glycosylation abnormalities.

6.
Heliyon ; 10(17): e36220, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286095

RESUMEN

Sjögren's syndrome (SS) is a chronic autoimmune disease that affects the exocrine glands and may lead to a range of systemic symptoms that impact various organs. Both innate and adaptive immune pathways might trigger the disease. Studying the signaling pathways underlying SS is crucial for enhancing diagnostic and therapeutic effectiveness. SS poses an ongoing challenge for medical professionals owing to the limited therapeutic options available. This review offers a comprehensive understanding of the intricate nature of SS, encompassing disease classification criteria, risk factors, and signaling pathways in immunity and inflammation. The advancements summarized herein have the potential to spark new avenues of research into SS.

7.
Clin Res Hepatol Gastroenterol ; : 102464, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276854

RESUMEN

INTRODUCTION: The prognostic value of baseline variant allele frequency (VAF) in circulating tumor DNA (ctDNA) of colorectal cancer liver metastases (CRLM) patients after curative resection was rarely investigated. METHODS: A single-center prospective study was performed to investigate the prognostic impact of baseline VAF in ctDNA and matched tumor tissues of CRLM patients after curative resection between May 2019 and May 2021 by the Illumina NovoSeq 6000 platform. The relationship of the tumor burden score (TBS) and the VAF in ctDNA and matched tumor tissues was evaluated by the Pearson correlation method. The survival curves of recurrence-free survival (RFS) and overall survival (OS) were plotted. Factors associated with RFS were calculated using Cox regression analysis, and an integrated prognostic model using significant baseline variables was proposed. RESULTS: There were 121 patients with baseline ctDNA and matched tumor tissues enrolled in the study. A total of 417 mutations spanning 20 genes were identified in baseline tumor tissues of 119/121 (98.3%) cases. The overall mutations in tumor tissues were completely covered by ctDNA in 52 of 121(43.0%) patients. Baseline VAF in ctDNA but not in tumor tissues was significantly correlated to TBS of CRLM (R=0.36, p<0.001). Significantly longer RFS but not OS was observed in patients with lower VAF in ctDNA compared to those with higher one (p<0.001 and p=0.33 respectively). Multivariate Cox regression analysis showed higher VAF in baseline ctDNA was an independent risk factor for RFS. An integrated prognostic model including baseline metastasis location and VAF in ctDNA outperformed the traditional CRS model in predicting RFS. CONCLUSION: Baseline VAF in ctDNA but not in tumor tissues influenced RFS of CRLM patients after curative resection.

8.
Ageing Res Rev ; : 102489, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277050

RESUMEN

The impact of stroke on global health is profound, with both high mortality and morbidity rates. This condition can result from cerebral ischemia, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH). The pathophysiology of stroke involves secondary damage and irreversible loss of neuronal function. Post-translational modifications (PTMs) have been recognized as crucial regulatory mechanisms in ischemic and hemorrhagic stroke-induced brain injury. These PTMs include phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and succinylation. This comprehensive review delves into recent research on the PTMs landscape associated with neuroinflammation and neuronal death specific to cerebral ischemia, ICH, and SAH. This review aims to explain the role of PTMs in regulating pathologic mechanisms and present critical techniques and proteomic strategies for identifying PTMs. This knowledge helps us comprehend the underlying mechanisms of stroke injury and repair processes, leading to the development of innovative treatment strategies. Importantly, this review underscores the significance of exploring PTMs to understand the pathophysiology of stroke.

9.
Pestic Biochem Physiol ; 204: 106098, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277407

RESUMEN

Fenitrothion (FNT) is a common organophosphorus pesticide that is widely used in both agricultural and domestic pest control. FNT has been frequently detected in various environmental media, including the human body, and is a notable contaminant. Epidemiological investigations have recently shown the implications of exposure to FNT in the incidence of various metabolic diseases, such as diabetes mellitus in humans, indicating that FNT may be a potential endocrine disruptor. However, the effects of FNT exposure on glucose homeostasis and their underlying mechanisms in model organisms remain largely unknown, which may limit our understanding of the health risks of FNT. In this study, FNT (4 5, 90, 180, and 4 50 µM) exposure model of rat hepatocytes (Buffalo Rat Liver, BRL cells) was established to investigate the effects and potential mechanisms of its toxicity on glucose metabolism. Several key processes of glucose metabolism were detected in this study. The results showed significantly increased glucose levels in the culture medium and decreased glycogen content in the FNT-exposed BRL cells. The results of quantitative real-time PCR and enzymology showed the abnormal expression of genes and activity/content of glucose metabolic enzymes involved in glucose metabolism, which might promote gluconeogenesis and inhibit glucose uptake, glycolysis, and glycogenesis. Furthermore, gluconeogenesis and glycolytic were carried out in the mitochondrial membrane. The abnormal of mitochondrial membrane potential may be a potential mechanism underlying FNT-induced glucose metabolism disorder. In addition, the mRNA and protein expression implicated that FNT may disrupt glucose metabolism by inhibiting the AMPKα and IRS1/PI3K/AKT signaling pathways. In conclusion, results provide in vitro evidence that FNT can cause glucose metabolism disorder, which emphasizes the potential health risks of exposure to FNT in inducing diabetes mellitus.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Fenitrotión , Glucosa , Proteínas Sustrato del Receptor de Insulina , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Ratas , Fenitrotión/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Glucosa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Trastornos del Metabolismo de la Glucosa/inducido químicamente , Trastornos del Metabolismo de la Glucosa/metabolismo , Insecticidas/toxicidad
10.
Int J Biol Macromol ; : 135310, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270904

RESUMEN

Sulfation of polysaccharides can affect their biological activity by introducing sulfate groups. Skin burns occur regularly and have a great impact on normal survival. In this study, sulfated arabinogalactan (SAG) was prepared by sulfation, and polyvinyl alcohol (PVA) was used to prepare hydrogels for the treatment of scalded skin in mouse. The results show that the main chain of SAG consists of →3-ß-D-Galactose (Gal)-(1, →3, 6)-ß-D-Gal-(1 and →4)-ß-d-Glucose (Glc)-(1. The chain is a neutral polysaccharide composed of T-ß-L-Arabinose (Araf)-(1→, with a molecular weight of 17.9 kDa. At the same time, PVA + SAG hydrogel can promote the scald repair of mouse skin by promoting collagen deposition and angiogenesis, and regulating the TLR4/MyD88/NF-κB signaling pathway. Interestingly, the effect of SAG on promoting the repair of scald wounds is enhanced after AG is derivatized by sulfation. Therefore, the preparation of SAG by sulfation can promote scald repair, and has great application potential in the field of food and medicine.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39229762

RESUMEN

Purpose: The early detection of breast cancer in women under the age of 40 has posed significant challenges. This can be attributed in part to the limited research conducted on the breast cancer in this age group, particularly with regards to large sample sizes. We aimed to address this gap by analyzing and comparing the ultrasound imaging and pathological characteristics of breast cancer in women aged under 40 and those aged 40 and above. Methods: A retrospective assessment was conducted to examine the ultrasound imaging and clinicopathologic characteristics of 555 women with surgically confirmed breast cancers. The patient cohort consisted of 160 individuals below the age of 40 and 395 individuals aged 40 years and above. Results: Our study identified the breast cancer in patients under 40 years was more likely to show regular shape (p = 0.043) compared with tumors in patients who were 40 years and over. Furthermore, in young female patients (<40 years), irregular shape was correlated with the HER2-enriched type (p = 0.02), circumscribed margin (p = 0.001), and a lack of calcifications (p = 0.02) were associated with the triple-negative type. In another group (≥40 years), only a lack of calcifications (p = 0.003) were associated with the triple-negative type. Conclusion: Breast cancer in women under the age of 40 exhibits distinct ultrasonographic characteristics patterns that vary across different immunophenotypes, which may provide certain predictive information for physicians.

13.
BMC Nurs ; 23(1): 598, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187804

RESUMEN

BACKGROUND: Depressive symptoms among nurses have been a significant public health concern. Although many studies have demonstrated the potential relationship between interpersonal conflict at work and depressive symptoms, the mechanisms underlying this relationship among nurses remain unclear. Based on the theoretical and empirical research, this study aimed to investigate the multiple mediating effects of negative emotion at work and meaning in life on the relationship between interpersonal conflict at work and depressive symptoms among nurses. METHODS: An online multicenter cross-sectional study was conducted in 15 hospitals from different geographical areas of Hunan Province, China, from December 2021 to February 2022. A total of 1754 nurses completed validated self-reported questionnaires, including their sociodemographic information, interpersonal conflict at work, negative emotions at work, meaning in life, and depressive symptoms. Descriptive statistics analysis, Spearman's correlation analysis, multiple linear regression analysis, and chain mediation analysis were performed using IBM SPSS software (version 29) and Mplus software (version 8). RESULTS: There were significant correlations between interpersonal conflict at work, negative emotions at work, meaning in life, and depressive symptoms (r = -0.206 ~ 0.518, all p < 0.01). Interpersonal conflict at work had a statistically significantly direct effect on depressive symptoms (ß = 0.061; 95% confidence interval, CI: 0.011 ~ 0.126, p = 0.039). Analysis of mediating effects revealed that interpersonal conflict at work also influenced depressive symptoms through two statistically significantly indirect pathways: (a) the mediating effect of negative emotions at work (ß = 0.167; 95% CI: 0.138 ~ 0.195, p < 0.001) and (b) the chain mediating effect between negative emotions at work and meaning in life (ß = 0.008; 95% CI: 0.003 ~ 0.013, p = 0.005). CONCLUSION: Interpersonal conflict at work has a direct positive effect on depressive symptoms among nurses. Meanwhile, interpersonal conflict at work can influence depressive symptoms among nurses through the mediating effect of negative emotions at work and the chain mediating effect between negative emotions at work and meaning in life.

14.
Cell Rep ; 43(8): 114623, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39146179

RESUMEN

Selection of fruits with enhanced health benefits and superior flavor is an important aspect of peach breeding. Understanding the genetic interplay between appearance and flavor chemicals remains a major challenge. We identify the most important volatiles contributing to consumer preferences for peach, thus establishing priorities for improving flavor quality. We quantify volatiles of a peach population consisting of 184 accessions and demonstrate major reductions in the important flavor volatiles linalool and Z-3-hexenyl acetate in red-fleshed accessions. We identify 474 functional gene regulatory networks (GRNs), among which GRN05 plays a crucial role in controlling both red flesh and volatile content through the NAM/ATAF1/2/CUC (NAC) transcription factor PpBL. Overexpressing PpBL results in reduced expression of PpNAC1, a positive regulator for Z-3-hexenyl acetate and linalool synthesis. Additionally, we identify haplotypes for three tandem PpAATs that are significantly correlated with reduced gene expression and ester content. We develop genetic resources for improvement of fruit quality.


Asunto(s)
Frutas , Prunus persica , Frutas/genética , Frutas/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Regulación de la Expresión Génica de las Plantas , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Redes Reguladoras de Genes , Odorantes/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Multiómica
15.
J Adv Res ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39111623

RESUMEN

INTRODUCTION: Heterosis has revolutionized crop breeding, enhancing global agricultural production. However, the mechanisms underlying heterosis remain obscure. Xiangzamian 2# (XZM2), a super hybrid upland cotton (Gossypium hirsutum L.) characterized by high-yield heterosis, has been developed and extensively planted in China. OBJECTIVES: We conducted a systematic analysis of CRI12 and J8891, two parents of XZM2. We aimed to reveal the precise genetic information and the role of non-syntenic divergence in shaping heterosis, laying a foundation for advancing understanding of heterosis. METHODS: We de novo assembled high-quality genomes of CRI12 and J8891, and further uncovered abundant genetic variations and non-syntenic regions between the parents. Whole-genome comparison, association analysis, transcriptomic analysis and relative identity-by-descent (rIBD) estimation were conducted to identify structural variations (SVs) and introgressions within non-syntenic blocks and to analyze their impacts on promoting heterosis. RESULTS: Parental genetic divergence increased in non-syntenic regions. Furthermore, these regions, accounting for only 16.71% of the total genome, contained more loci with significantly higher heterotic effects, far exceeding the syntenic background. SVs covered 97.26% of non-syntenic sequences and caused widespread gene expression differences in these regions, driving dynamic complementation of gene expression in the hybrid. A set of SVs were responsible for trait improvement and had positive effects on heterosis, contributing larger heritability than short variations. We characterized numerous parental-specific introgressions from G. barbadense. Specifically, a functional introgression segment within non-syntenic blocks introduced an elite haplotype, which significantly increased lint yield and enhanced heterosis. CONCLUSION: Our study clarified non-syntenic regions to harbor more loci with higher heterotic effects, revealed their importance in promoting heterosis and supported the crucial role of genetic complementation in heterosis. SVs and introgressions were identified as key factors responsible for non-syntenic divergence between the parents. They had important effects on gene expression and trait improvement, positively contributing to heterosis.

16.
Int J Biol Sci ; 20(10): 3863-3880, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113716

RESUMEN

The mechanisms behind the selection and initial recruitment of primordial follicles (PmFs) from the non-growing PmF pool during each estrous cycle in females remain largely unknown. This study demonstrates that PmFs closest to the ovulatory follicle are preferentially activated in mouse ovaries under physiological conditions. PmFs located within 40 µm of the ovulatory follicles were more likely to be activated compared to those situated further away during the peri-ovulation period. Repeated superovulation treatments accelerated the depletion of the PmF reserve, whereas continuous suppression of ovulation delayed PmF reserve consumption. Spatial transcriptome sequencing of peri-ovulatory follicles revealed that ovulation primarily induces the degradation and remodeling of the extracellular matrix (ECM). This ECM degradation reduces mechanical stress around PmFs, thereby triggering their activation. Specifically, Cathepsin L (CTSL), a cysteine proteinase and lysosomal enzyme involved in ECM degradation, initiates the activation of PmFs adjacent to ovulatory follicles in a distance-dependent manner. These findings highlight the link between ovulation and selective PmF activation, and underscore the role of CTSL in this process under physiological conditions.


Asunto(s)
Catepsina L , Matriz Extracelular , Folículo Ovárico , Ovulación , Animales , Femenino , Ratones , Folículo Ovárico/metabolismo , Catepsina L/metabolismo , Ovulación/fisiología , Matriz Extracelular/metabolismo , Ovario/metabolismo , Ciclo Estral/fisiología
18.
J Colloid Interface Sci ; 677(Pt A): 739-749, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39121658

RESUMEN

HYPOTHESIS: Hydrogel actuators powered by chemical fuels are pivotal in autonomous soft robotics. Nevertheless, chemical waste accumulation caused by chemical fuels hampers the development of programmable and reusable hydrogel actuating systems. We propose the concept of ionic fuel-powered soft robotics which are constructed by programmable salt-responsive actuators and use waste-free ionic fuels. EXPERIMENTS: Herein, soft hydrogel actuators were developed by orchestrating the Janus bilayer hydrogels' capacity for swelling and shrinking. Decomposable and easily removable ionic fuels were applied to power the actuators. Swelling tests were used to evaluate the deformability of the hydrogels. Tensile tests were performed to investigate the modulus of the hydrogels. The bonded interface composed of the interpenetrating polymer chains from both hydrogel layers bilayer was evidenced by the optical microscopy and scanning electron microscopy. The ionic conductivities of solutions were determined by a conductivity meter. Furthermore, a range of biomimetic soft robots with various shapes and asymmetrical structures have been designed and fabricated to execute complex functions. FINDINGS: The programmable actuators powered by ionic fuel exhibit adjustable bending orientations, amplitudes, and durations, along with consistent cyclic actuations enabled by replenishment of the fuel without noticeable loss in performance. Many life-like programmable soft robotic systems were designed, indicating spatiotemporally controllable functions.

19.
J Am Chem Soc ; 146(32): 22553-22562, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39101269

RESUMEN

N2-Alkyl-2'-deoxyguanosine (N2-alkyl-dG) is a major type of minor-groove DNA lesions arising from endogenous metabolic processes and exogenous exposure to environmental contaminants. The N2-alkyl-dG lesions, if left unrepaired, can block DNA replication and transcription and induce mutations in these processes. Nevertheless, the repair pathways for N2-alkyl-dG lesions remain incompletely elucidated. By utilizing a photo-cross-linking coupled with mass spectrometry-based quantitative proteomic analysis, we identified a series of candidate N2-alkyl-dG-binding proteins. We found that two of these proteins, i.e., high-mobility group protein B3 (HMGB3) and SUB1, could bind directly to N2-nBu-dG-containing duplex DNA in vitro and promote the repair of this lesion in cultured human cells. In addition, HMGB3 and SUB1 protected cells against benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE). SUB1 exhibits preferential binding to both the cis and trans diastereomers of N2-BPDE-dG over unmodified dG. On the other hand, HMGB3 binds favorably to trans-N2-BPDE-dG; the protein, however, does not distinguish cis-N2-BPDE-dG from unmodified dG. Consistently, genetic ablation of HMGB3 conferred diminished repair of trans-N2-BPDE-dG, but not its cis counterpart, whereas loss of SUB1 conferred attenuated repair of both diastereomers. Together, we identified proteins involved in the cellular sensing and repair of minor-groove N2-alkyl-dG lesions and documented a unique role of HMGB3 in the stereospecific recognition and repair of N2-BPDE-dG.


Asunto(s)
Reparación del ADN , ADN , Proteína HMGB3 , Humanos , ADN/química , ADN/metabolismo , Daño del ADN , Enzimas Reparadoras del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Guanina/química , Guanina/metabolismo , Proteína HMGB3/metabolismo , Proteína HMGB3/química , Unión Proteica
20.
Pharmacogenet Genomics ; 34(8): 261-267, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39171428

RESUMEN

PURPOSE: The purpose of this study was to evaluate the effect of UGT1A4 and UGT2B7 polymorphisms on the plasma concentration of lamotrigine in Chinese patients with bipolar disorder. METHODS: A total of 104 patients were included in this study. Steady-state plasma lamotrigine concentrations were determined in each patient after at least 21 days of continuous treatment with a set dose of the drug. Lamotrigine plasma concentrations were ascertained using ultra-performance liquid chromatography. Simultaneously, plasma samples were used for patient genotyping. RESULTS: The age, sex, BMI, daily lamotrigine dose, plasma lamotrigine concentration, and lamotrigine concentration/dose ratio of patients exhibited significant differences, and these were associated with differences in the genotype [ UGT1A4 -142T>G and UGT2B7 -161C>T ( P  < 0.05)]. Patients with the GG and GT genotypes in UGT1A4 -142T>G had significantly higher lamotrigine concentration/dose values (1.6 ±â€…1.1 and 1.7 ±â€…0.5 µg/ml per mg/kg) than those with the TT genotype (1.4 ±â€…1.1 µg/ml per mg/kg). Likewise, patients with the UGT2B7 -161C>T TT genotype had significantly higher lamotrigine concentration/dose values (1.6 ±â€…1.1 µg/ml per mg/kg) than those with the CC genotype (1.3 ±â€…1.3 µg/ml per mg/kg). Multiple linear regression analysis showed that sex, lamotrigine dose, UGT1A4 -142T>G, and UGT2B7 -161C>T were the most important factors influencing lamotrigine pharmacokinetics ( P  < 0.001). CONCLUSION: The study results suggest that the UGT1A4 -142T>G and UGT2B7 -161C>T polymorphisms affect lamotrigine plasma concentrations in patients with bipolar disorder.


Asunto(s)
Trastorno Bipolar , Glucuronosiltransferasa , Lamotrigina , Triazinas , Humanos , Lamotrigina/sangre , Lamotrigina/farmacocinética , Lamotrigina/administración & dosificación , Lamotrigina/uso terapéutico , Glucuronosiltransferasa/genética , Masculino , Femenino , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/genética , Trastorno Bipolar/sangre , Adulto , Triazinas/farmacocinética , Triazinas/sangre , Triazinas/administración & dosificación , Triazinas/uso terapéutico , Persona de Mediana Edad , Genotipo , Polimorfismo de Nucleótido Simple/genética , Pueblo Asiatico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA