Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cureus ; 15(1): e34208, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36843716

RESUMEN

BACKGROUND: Congenital cataract is a common cause of blindness in childhood. About half of the cases have a genetic etiology, and more than 100 genes have been associated with congenital cataracts. This study reports the clinical and genetic findings of a two-generation Chinese family affected by congenital cataract. METHODS: Ophthalmologic examinations were performed for clinical evaluation of the cataract patients. Whole exome sequencing (WES) and Sanger sequencing were used to identify potentially relevant mutations. The online programsProtein Variation Effect Analyzer (PROVEAN) and Sorting Intolerant from Tolerant (SIFT) were employed to predict the impact of variation on protein function. RESULTS: Both the proband and her mother were blind because of bilateral nuclear cataracts, and the elder brother of the proband also manifested obvious bilateral cataracts. Sanger sequencing confirmed the mutations in the proband as well as in her mother. The elder brother simply carried the PAX6 c.221G>A variation. The WFS1 c.2070_2079del variation potentially generates a loss-of-function mutant. CONCLUSION: The novel PAX6mutation (c.221G>A) is associated with congenital cataract, and the WFS1 mutation (c.2070_2079del) may interactively aggravates this process. These findings may increase our understanding of the genetic etiology of congenital cataract.

2.
Front Genet ; 12: 715599, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603379

RESUMEN

The signal-induced proliferation-associated 1-like 3 (SIPA1L3) gene that encodes a putative Rap GTPase-activating protein (RapGAP) has been associated with congenital cataract and eye development abnormalities. However, our current understanding of the mutation spectrum of SIPA1L3 associated with eye defects is limited. By using whole-exome sequencing plus Sanger sequencing validation, we identified a novel heterozygous c.1871A > G (p.Lys624Arg) variation within the predicted RapGAP domain of SIPA1L3 in the proband with isolated juvenile-onset cataracts from a three-generation Chinese family. In this family, the proband's father and grandmother were also heterozygous for the c.1871A > G variation and affected by cataracts varying in morphology, severity, and age of onset. Sequence alignment shows that the Lys 624 residue of SIPA1L3 is conserved across the species. Based on the resolved structure of Rap1-Rap1GAP complex, homology modeling implies that the Lys 624 residue is structurally homologous to the Lys 194 of Rap1GAP, a highly conserved lysine residue that is involved in the interface between Rap1 and Rap1GAP and critical for the affinity to Rap·GTP. We reasoned that arginine substitution of lysine 624 might have an impact on the SIPA1L3-Rap·GTP interaction, thereby affecting the regulatory function of SIPA1L3 on Rap signaling. Collectively, our finding expands the mutation spectrum of SIPA1L3 and provides new clues to the molecular mechanisms of SIPA1L3-related cataracts. Further investigations are warranted to validate the functional alteration of the p.Lys624Arg variant of SIPA1L3.

3.
Ying Yong Sheng Tai Xue Bao ; 21(10): 2494-500, 2010 Oct.
Artículo en Chino | MEDLINE | ID: mdl-21328934

RESUMEN

To better understand the effects of forest gap on the herbaceous species community in a mixed birch-fir forest of Taibai Mountain in Qinling, CCA ordination and random permutation test were employed to analyze the distribution pattern of the species composition across a gradient of gap size, and the relationships between the distribution of 55 herbaceous species with > or = 5 individuals and the habitat variables (convexity, slope, and soil total N, total P, available N, available P, pH, and organic matter). In this forest, gap area occupied 19.8% of the total land area, gap density was 20.7 per hm2, and gap size varied from 25.6 to 279.1 m2, with a mean of 93.7 m2. The species richness in herbaceous layer in gaps was significantly positively correlated with gap size, but of the 69 herbaceous species identified in the gaps, most species were found across all gap sizes, and only eight species were found in larger gaps (>120 m2). No successional change was observed in the herbaceous species distribution with gap size. The CCA ordination and random permutation test also showed that 27.3% of the 55 species with abundance > or = 5 had significant association with the eight habitat variables. It was concluded that gap size contributed to the species richness, but determined the diversity constitution in random.


Asunto(s)
Abies/crecimiento & desarrollo , Betula/crecimiento & desarrollo , Biodiversidad , Ecosistema , Poaceae/crecimiento & desarrollo , China , Conservación de los Recursos Naturales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA