Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(6): 1108-1116, 2023 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-38151933

RESUMEN

Patients with acute heart failure (AHF) often experience dyspnea, and monitoring and quantifying their breathing patterns can provide reference information for disease and prognosis assessment. In this study, 39 AHF patients and 24 healthy subjects were included. Nighttime chest-abdominal respiratory signals were collected using wearable devices, and the differences in nocturnal breathing patterns between the two groups were quantitatively analyzed. Compared with the healthy group, the AHF group showed a higher mean breathing rate (BR_mean) [(21.03 ± 3.84) beat/min vs. (15.95 ± 3.08) beat/min, P < 0.001], and larger R_RSBI_cv [70.96% (54.34%-104.28)% vs. 58.48% (45.34%-65.95)%, P = 0.005], greater AB_ratio_cv [(22.52 ± 7.14)% vs. (17.10 ± 6.83)%, P = 0.004], and smaller SampEn (0.67 ± 0.37 vs. 1.01 ± 0.29, P < 0.001). Additionally, the mean inspiratory time (TI_mean) and expiration time (TE_mean) were shorter, TI_cv and TE_cv were greater. Furthermore, the LBI_cv was greater, while SD1 and SD2 on the Poincare plot were larger in the AHF group, all of which showed statistically significant differences. Logistic regression calibration revealed that the TI_mean reduction was a risk factor for AHF. The BR_ mean demonstrated the strongest ability to distinguish between the two groups, with an area under the curve (AUC) of 0.846. Parameters such as breathing period, amplitude, coordination, and nonlinear parameters effectively quantify abnormal breathing patterns in AHF patients. Specifically, the reduction in TI_mean serves as a risk factor for AHF, while the BR_mean distinguishes between the two groups. These findings have the potential to provide new information for the assessment of AHF patients.


Asunto(s)
Insuficiencia Cardíaca , Dispositivos Electrónicos Vestibles , Humanos , Insuficiencia Cardíaca/diagnóstico , Pronóstico , Respiración , Enfermedad Aguda
2.
Med Phys ; 50(4): 2565-2576, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36433681

RESUMEN

BACKGROUND: Magnetic-induction phase shift (MIPS) was rarely used in vivo and clinically because of low sensitivity and nonquantitative detection. The conventional single excitation coil and single detection coil (single coil-coil) generates divergent excitation magnetic field, resulting in different sensitivity of different object positions. PURPOSE: To improve the sensitivity and linearity of MIPS and object volume to realize quantitative detection, a novel sensor system was proposed. METHODS: The novel sensor system adopted uniform rotating magnetic field replacing the divergent magnetic field for the first time integrated with primary field cancellation. The uniform rotating magnetic field was generated by a birdcage coil excited by two orthogonal current; the primary field cancellation was realized by a specially arranged solenoid receiver coil installed co-axially with the birdcage coil detecting the z, not x and y-component of the secondary magnetic field. RESULTS: The saltwater simulation experiment showed that MIPS changed high linearity with the injection volume of all four different conductivity solutions. The experimental results of rabbit cerebral hemorrhage (CH) revealed that with injected blood volume increased to 3 ml, the MIPS linearly decreased to -1.916°, which was 5.5 times higher than that of the single coil-coil method. CONCLUSION: Compared with the single coil-coil method, this novel detection system was more sensitive and linearly correlated for the detection of bleeding volume. It provided the probability of quantitative detection of the CH volume and a series of brain-content diseases.


Asunto(s)
Hemorragia Cerebral , Campos Magnéticos , Animales , Conejos , Hemorragia Cerebral/diagnóstico , Simulación por Computador , Fantasmas de Imagen , Fenómenos Físicos , Imagen por Resonancia Magnética/métodos
3.
Biomed Eng Online ; 20(1): 74, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344370

RESUMEN

BACKGROUND: Cerebral edema is a common condition secondary to any type of neurological injury. The early diagnosis and monitoring of cerebral edema is of great importance to improve the prognosis. In this article, a flexible conformal electromagnetic two-coil sensor was employed as the electromagnetic induction sensor, associated with a vector network analyzer (VNA) for signal generation and receiving. Measurement of amplitude data over the frequency range of 1-100 MHz is conducted to evaluate the changes in cerebral edema. We proposed an Amplitude-based Characteristic Parameter Extraction (Ab-CPE) algorithm for multi-frequency characteristic analysis over the frequency range of 1-100 MHz and investigated its performance in electromagnetic induction-based cerebral edema detection and distinction of its acute/chronic phase. Fourteen rabbits were enrolled to establish cerebral edema model and the 24 h real-time monitoring experiments were carried out for algorithm verification. RESULTS: The proposed Ab-CPE algorithm was able to detect cerebral edema with a sensitivity of 94.1% and specificity of 95.4%. Also, in the early stage, it can detect cerebral edema with a sensitivity of 85.0% and specificity of 87.5%. Moreover, the Ab-CPE algorithm was able to distinguish between acute and chronic phase of cerebral edema with a sensitivity of 85.0% and specificity of 91.0%. CONCLUSION: The proposed Ab-CPE algorithm is suitable for multi-frequency characteristic analysis. Combined with this algorithm, the electromagnetic induction method has an excellent performance on the detection and monitoring of cerebral edema.


Asunto(s)
Edema Encefálico , Algoritmos , Animales , Edema Encefálico/diagnóstico , Fenómenos Electromagnéticos , Conejos
4.
BMC Neurol ; 21(1): 26, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33455585

RESUMEN

BACKGROUND: To investigate the feasibility of intracranial pressure (ICP) monitoring after traumatic brain injury (TBI) by electromagnetic coupling phase sensing, we established a portable electromagnetic coupling phase shift (ECPS) test system and conducted a comparison with invasive ICP. METHODS: TBI rabbits' model were all synchronously monitored for 24 h by ECPS testing and invasive ICP. We investigated the abilities of the ECPS to detect targeted ICP by feature extraction and traditional classification decision algorithms. RESULTS: The ECPS showed an overall downward trend with a variation range of - 13.370 ± 2.245° as ICP rose from 11.450 ± 0.510 mmHg to 38.750 ± 4.064 mmHg, but its change rate gradually declined. It was greater than 1.5°/h during the first 6 h, then decreased to 0.5°/h and finally reached the minimum of 0.14°/h. Nonlinear regression analysis results illustrated that both the ECPS and its change rate decrease with increasing ICP post-TBI. When used as a recognition feature, the ability (area under the receiver operating characteristic curve, AUCs) of the ECPS to detect ICP ≥ 20 mmHg was 0.88 ± 0.01 based on the optimized adaptive boosting model, reaching the advanced level of current noninvasive ICP assessment methods. CONCLUSIONS: The ECPS has the potential to be used for noninvasive continuous monitoring of elevated ICP post-TBI.


Asunto(s)
Algoritmos , Lesiones Traumáticas del Encéfalo/complicaciones , Hipertensión Intracraneal/diagnóstico , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Animales , Fenómenos Electromagnéticos , Hipertensión Intracraneal/etiología , Masculino , Conejos
5.
PeerJ ; 9: e10583, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33505798

RESUMEN

Intracranial hemorrhage (ICH) carrying extremely high morbidity and mortality can only be detected by CT, MRI and other large equipment, which do not meet the requirements for bedside continuous monitoring and pre-hospital first aid. Since the biological tissues have different dielectric properties except the pure resistances, and the permittivity of blood is far larger than that of other brain tissues, here a new method was used to detect events of change at the blood/tissue volume ratio by measuring of the head permittivity. In this paper, we use a self-made parallel plate capacitor to detect the intracranial hemorrhage in rabbits by contactless capacitance measurement. The sensitivity of the parallel-plate capacitor was also evaluated by the physical solution measurement. The results of physical experiments show that the capacitor can distinguish between three solutions with different permittivity, and the capacitance increased with the increase of one solution between two plates. At the next step in the animal experiment, the capacitance changes caused by 2 ml blood injection into the rabbit brain were measured. The results of animal experiments show that the capacitance was almost unchanged before and after the blood injection, but increased with the increase of the blood injection volume. The increase of capacitance caused by blood injection was much larger than that before and after blood injection (P < 0.01). The experiments show that this method is feasible for the detection of intracranial hemorrhage in a non-invasive and contactless manner.

6.
Biomed Eng Online ; 19(1): 83, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176808

RESUMEN

BACKGROUND: As a serious clinical disease, ischemic stroke is usually detected through magnetic resonance imaging and computed tomography. In this study, a noninvasive, non-contact, real-time continuous monitoring system was constructed on the basis of magnetic induction phase shift (MIPS) technology. The "thrombin induction method", which conformed to the clinical pathological development process of ischemic stroke, was used to construct an acute focal cerebral ischemia model of rabbits. In the MIPS measurement, a "symmetric cancellation-type" magnetic induction sensor was used to improve the sensitivity and antijamming capability of phase detection. METHODS: A 24-h MIPS monitoring experiment was carried out on 15 rabbits (10 in the experimental group and five in the control group). Brain tissues were taken from seven rabbits for the 2% triphenyl tetrazolium chloride staining and verification of the animal model. RESULTS: The nonparametric independent-sample Wilcoxon rank sum test showed significant differences (p < 0.05) between the experimental group and the control group in MIPS. Results showed that the rabbit MIPS presented a declining trend at first and then an increasing trend in the experimental group, which may reflect the pathological development process of cerebral ischemic stroke. Moreover, TTC staining results showed that the focal cerebral infarction area increased with the development of time CONCLUSIONS: Our experimental study indicated that the MIPS technology has a potential ability of differentiating the development process of cytotoxic edema from that of vasogenic edema, both of which are caused by cerebral ischemia.


Asunto(s)
Hemorragia Cerebral/fisiopatología , Conductividad Eléctrica , Fenómenos Magnéticos , Monitoreo Fisiológico/métodos , Enfermedad Aguda , Animales , Conejos , Factores de Tiempo
7.
PeerJ ; 8: e10079, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33083136

RESUMEN

Cerebral edema (CE) is a non-specific pathological swelling of the brain secondary to any type of neurological injury. The real-time monitoring of focal CE mostly found in early stage is of great significance to reduce mortality and disability. Magnetic Induction Phase Shift (MIPS) is expected to achieve non-invasive continuous monitoring of CE. However, most existing MIPS sensors are made of hard materials which makes it difficult to accurately retrieve CE information. In this article, we designed a conformal two-coil structure and a single-coil structure, and studied their sensitivity map using finite element method (FEM). After that, the conformal MIPS sensor that is preferable for local CE monitoring was fabricated by flexible printed circuit (FPC). Next, physical experiments were conducted to investigate its performance on different levels of simulated CE solution volume, measurement distance, and bending. Subsequently, 14 rabbits were chosen to establish CE model and another three rabbits were selected as controls. The 24-hour MIPS real-time monitoring experiments was carried out to verify that the feasibility. Results showed a gentler attenuation trend of the conformal two-coil structure, compared with the single-coil structure. In addition, the novel flexible conformal MIPS sensor has a characteristic of being robust to bending according to the physical experiments. The results of animal experiments showed that the sensor can be used for CE monitoring. It can be concluded that this flexible conformal MIPS sensor is desirable for local focusing measurement of CE and subsequent multidimensional information extraction for predicting model. Also, it enables a much more comfortable environment for long-time bedside monitoring.

8.
Physiol Meas ; 41(9): 095004, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32759483

RESUMEN

OBJECTIVE: This study aimed to perform experiments to investigate the change trend in brain magnetic induction phase shift (MIPS) during hemorrhagic shock of different degrees of severity and to find the correlation between brain MIPS value and commonly used physiological indicators for detecting shock so as to explore a noninvasive method suitable for prehospital real-time detection of cerebral blood perfusion in hemorrhagic shock. APPROACH: The self-developed MIPS detection system was used to monitor the brain MIPS value in the whole process of hemorrhagic shock models of rabbits with different degrees of severity (control, mild, moderate, and severe) of shock in real time. Meanwhile, common physiological parameters, including arterial blood lactate (ABL), mean arterial pressure (MAP), heart rate (HR),core body temperature (CBT), regional cerebral blood flow (rCBF), and electroencephalogram (EEG), were also evaluated. MAIN RESULTS: The findings suggested that the brain MIPS value showed a downward trend in the shock process, and the decline degree of the MIPS value positively correlated with the severity of shock. Moreover, it showed a good detection and resolution ability in time/process and severity (P < 0.05). The MIPS values significantly correlated with ABL (P < 0.01), CBT (P < 0.01), and EEG (P < 0.05) at all four shock levels; with MAP (P < 0.05) and rCBF (P < 0.05) in the control, moderate, and severe groups; and with HR (P < 0.01) only in the severe group. SIGNIFICANCE: The results demonstrated that the brain MIPS value has the capability of detecting hemorrhagic shock. The MIPS technique is a noninvasive method suitable for prehospital real-time detection of cerebral blood perfusion in hemorrhagic shock.


Asunto(s)
Encéfalo , Circulación Cerebrovascular , Choque Hemorrágico , Animales , Encéfalo/diagnóstico por imagen , Fenómenos Magnéticos , Perfusión , Conejos , Choque Hemorrágico/diagnóstico
9.
Technol Health Care ; 27(S1): 273-285, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31045546

RESUMEN

BACKGROUND: Cerebral edema is a common secondary disease after stroke. It is very important to realize real-time continuous monitoring of cerebral edema for stroke patients. OBJECTIVE: A non-contact magnetic induction phase shift (MIPS) detection system is used to monitor the change of global brain electrical conductivity during cerebral edema. METHODS: In order to verify the feasibility of this system monitoring, we carry out salt solution simulation experiments and healthy people breath holding experiments. As a comparison of later clinical experiments, 13 young healthy volunteers aged 22-35 are selected for this study to carry out a 10 minute/time monitoring experiment. RESULTS: It is found that the MIPS values measured by the salt solution of edema and the salt solution of bleeding are significantly different. The results show that the MIPS value of healthy young people is in a stable state with an MIPS mean value of 1.106 (± 0.736)∘. Compare it with the monitoring results of a cerebral edema patient. The MIPS of patient fluctuates greatly, and the changes of MIPS and intracranial pressure show consistent trend at the peak of the edema period. CONCLUSIONS: We preliminarily verify that the system can be used for cerebral edema monitoring.


Asunto(s)
Edema Encefálico/diagnóstico , Campos Electromagnéticos , Voluntarios Sanos , Monitoreo Fisiológico/métodos , Adulto , Conductividad Eléctrica , Estudios de Factibilidad , Femenino , Humanos , Presión Intracraneal , Masculino , Monitoreo Fisiológico/instrumentación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA