Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 348: 112237, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39182620

RESUMEN

Cold stress detrimentally influences fruit development, leading to a substantial yield reduction in many fruit-bearing vegetables. Cucumber, a vegetable of subtropical origin, is especially sensitive to cold. Cold-inducible parthenocarpy (CIP) promises fruit yield under cold conditions. Previously, we identified a CIP line EC5 in cucumber, which showed strong parthenocarpy and sustained fruit growth under cold conditions (16°C day/10°C night). However, the candidate gene and genetic mechanism underlying CIP in cucumber remain unknown. In this study, both BSA-seq and conventional QTL mapping strategies were employed on F2 populations to delve into the genetic control of CIP. A single QTL, CIP5.1, was consistently mapped across two winter seasons in 2021 and 2022. Fine mapping delimited the CIP locus into a 38.3 kb region on chromosome 5, harboring 8 candidate genes. Among these candidates, CsAGL11 (CsaV3_5G040370) was identified, exhibiting multiple deletions/insertions in the promoter and 5'UTR region. The CsAGL11 gene encodes a MADS-box transcription factor protein, which is homologous to the genes previously recognized as negative regulators in ovule and fruit development of Arabidopsis and tomato. Correspondingly, cold treatment resulted in decreased expression of CsAGL11 during the early developmental stage of the fruit in EC5. A promoter activity assay confirmed promoter polymorphisms leading to weak transcriptional activation of CsAGL11 under cold conditions. This study deepens our understanding of the genetic characteristics of CIP and elucidates the potential role of the CsAGL11 gene in developing cucumber cultivars with enhanced fruiting under cold conditions.


Asunto(s)
Mapeo Cromosómico , Frío , Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/fisiología , Sitios de Carácter Cuantitativo/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
2.
Hortic Res ; 11(7): uhae127, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38966863

RESUMEN

Centromeres in eukaryotes mediate the accurate segregation of chromosomes during cell division. They serve as essential functional units of chromosomes and play a core role in the process of genome evolution. Centromeres are composed of satellite repeats and highly repetitive centromeric retrotransposons (CRs), which vary greatly even among closely related species. Cucumber (Cucumis sativus) is a globally cultivated and economically important vegetable and the only species in the Cucumis genus with seven pairs of chromosomes. Therefore, studying the centromeres of the Cucumis subgenus may yield valuable insights into its genome structure and evolution. Using chromatin immunoprecipitation (ChIP) techniques, we isolated centromeric DNA from cucumber reference line 9930. Our investigation into cucumber centromeres uncovered the centromeric satellite sequence, designated as CentCs, and the prevalence of Ty1/Copia long terminal repeat retrotransposons. In addition, active genes were identified in the CsCENH3 nucleosome regions with low transcription levels. To the best of our knowledge, this is the first time that characterization of centromeres has been achieved in cucumber. Meanwhile, our results on the distribution of CentCs and CsCRs in the subgenus Cucumis indicate that the content of centromeric repeats in the wild variants was significantly reduced compared with the cultivated cucumber. The results provide evidence for centromeric DNA amplification that occurred during the domestication process from wild to cultivated cucumber. Furthermore, these findings may offer new information for enhancing our understanding of phylogenetic relationships in the Cucumis genus.

3.
Plant J ; 118(3): 717-730, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38213282

RESUMEN

Cryptotaenia japonica, a traditional medicinal and edible vegetable crops, is well-known for its attractive flavors and health care functions. As a member of the Apiaceae family, the evolutionary trajectory and biological properties of C. japonica are not clearly understood. Here, we first reported a high-quality genome of C. japonica with a total length of 427 Mb and N50 length 50.76 Mb, was anchored into 10 chromosomes, which confirmed by chromosome (cytogenetic) analysis. Comparative genomic analysis revealed C. japonica exhibited low genetic redundancy, contained a higher percentage of single-cope gene families. The homoeologous blocks, Ks, and collinearity were analyzed among Apiaceae species contributed to the evidence that C. japonica lacked recent species-specific WGD. Through comparative genomic and transcriptomic analyses of Apiaceae species, we revealed the genetic basis of the production of anthocyanins. Several structural genes encoding enzymes and transcription factor genes of the anthocyanin biosynthesis pathway in different species were also identified. The CjANSa, CjDFRb, and CjF3H gene might be the target of Cjaponica_2.2062 (bHLH) and Cjaponica_1.3743 (MYB). Our findings provided a high-quality reference genome of C. japonica and offered new insights into Apiaceae evolution and biology.


Asunto(s)
Antocianinas , Apiaceae , Genoma de Planta , Genómica , Antocianinas/biosíntesis , Antocianinas/genética , Antocianinas/metabolismo , Genoma de Planta/genética , Apiaceae/genética , Apiaceae/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromosomas de las Plantas/genética
4.
Plant Sci ; 319: 111199, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35487648

RESUMEN

Wild species related to domesticated crops (crop wild relatives, or CWRs) represent a high level of genetic diversity that provides a practical gene pool for crop pre-breeding employed to address climate change and food demand challenges globally. Nevertheless, rapid identifying and visual tracking of alien chromosomes and sequences derived from CWRs have been a technical challenge for crop chromosome engineering. Here, a species-specific oligonucleotide (oligo) pool was developed by using the reference genome of Cucumis hystrix (HH, 2n = 2x = 24), a wild species carrying many favorable traits and interspecific compatibility with cultivated cucumber (C. sativus, CC, 2n = 2x = 14). These synthetic double-stranded oligo probes were applied to validate the assembly and characterize the chromosome architectures of C. hystrix, as well as to rapidly identify C. hystrix-chromosomes in diverse C. sativus-hystrix chromosome-engineered germplasms, including interspecific hybrid F1 (HC), synthetic allopolyploids (HHCC, CHC, and HCH) and alien additional lines (CC-H). Moreover, a ∼2Mb of C. hystrix-specific sequences, introduced into cultivated cucumber, were visualized by CWR-specific oligo-painting. These results demonstrate that the CWR-specific oligo-painting technique holds broad applicability for chromosome engineering of numerous crops, as it allows rapid identification of alien chromosomes, reliable detection of homoeologous recombination, and visual tracking of the introgression process. It is promising to achieve directed and high-precision crop pre-breeding combined with other breeding techniques, such as CRISPR/Cas9-mediated chromosome engineering.


Asunto(s)
Cucumis sativus , Cromosomas de las Plantas/genética , Productos Agrícolas/genética , Cucumis sativus/genética , Pool de Genes , Especies Introducidas , Fitomejoramiento/métodos
5.
Plant J ; 107(4): 1243-1259, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34160852

RESUMEN

Karyotype dynamics driven by complex chromosome rearrangements constitute a fundamental issue in evolutionary genetics. The evolutionary events underlying karyotype diversity within plant genera, however, have rarely been reconstructed from a computed ancestral progenitor. Here, we developed a method to rapidly and accurately represent extant karyotypes with the genus, Cucumis, using highly customizable comparative oligo-painting (COP) allowing visualization of fine-scale genome structures of eight Cucumis species from both African-origin and Asian-origin clades. Based on COP data, an evolutionary framework containing a genus-level ancestral karyotype was reconstructed, allowing elucidation of the evolutionary events that account for the origin of these diverse genomes within Cucumis. Our results characterize the cryptic rearrangement hotspots on ancestral chromosomes, and demonstrate that the ancestral Cucumis karyotype (n = 12) evolved to extant Cucumis genomes by hybridizations and frequent lineage- and species-specific genome reshuffling. Relative to the African species, the Asian species, including melon (Cucumis melo, n = 12), Cucumis hystrix (n = 12) and cucumber (Cucumis sativus, n = 7), had highly shuffled genomes caused by large-scale inversions, centromere repositioning and chromothripsis-like rearrangement. The deduced reconstructed ancestral karyotype for the genus allowed us to propose evolutionary trajectories and specific events underlying the origin of these Cucumis species. Our findings highlight that the partitioned evolutionary plasticity of Cucumis karyotype is primarily located in the centromere-proximal regions marked by rearrangement hotspots, which can potentially serve as a reservoir for chromosome evolution due to their fragility.


Asunto(s)
Cromosomas de las Plantas/genética , Cucumis/genética , Evolución Molecular , Cariotipo , África , Asia , Centrómero/genética , Pintura Cromosómica/métodos , Cucumis melo/genética , Cucumis sativus/genética , Genoma de Planta , Filogenia , Poliploidía
6.
Adv Sci (Weinh) ; 8(9): 2004222, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33977063

RESUMEN

The importance of allopolyploidy in plant evolution has been widely recognized. The genetic changes triggered by allopolyploidy, however, are not yet fully understood due to inconsistent phenomena reported across diverse species. The construction of synthetic polyploids offers a controlled approach to systematically reveal genomic changes that occur during the process of polyploidy. This study reports the first fully sequenced synthetic allopolyploid constructed from a cross between Cucumis sativus and C. hystrix, with high-quality assembly. The two subgenomes are confidently partitioned and the C. sativus-originated subgenome predominates over the C. hystrix-originated subgenome, retaining more sequences and showing higher homeologous gene expression. Most of the genomic changes emerge immediately after interspecific hybridization. Analysis of a series of genome sequences from several generations (S0, S4-S13) of C. ×hytivus confirms that genomic changes occurred in the very first generations, subsequently slowing down as the process of diploidization is initiated. The duplicated genome of the allopolyploid with double genes from both parents broadens the genetic base of C. ×hytivus, resulting in enhanced phenotypic plasticity. This study provides novel insights into plant polyploid genome evolution and demonstrates a promising strategy for the development of a wide array of novel plant species and varieties through artificial polyploidization.


Asunto(s)
Cromosomas de las Plantas/genética , Cucumis/genética , Genoma de Planta/genética , Poliploidía , Secuenciación Completa del Genoma/métodos
7.
Genome ; 64(6): 627-638, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33460340

RESUMEN

Allopolyploids undergo "genomic shock" leading to significant genetic and epigenetic modifications. Previous studies have mainly focused on nuclear changes, while little is known about the inheritance and changes of organelle genome in allopolyploidization. The synthetic allotetraploid Cucumis ×hytivus, which is generated via hybridization between C. hystrix and C. sativus, is a useful model system for studying cytonuclear variation. Here, we report the chloroplast genome of allotetraploid C. ×hytivus and its diploid parents via sequencing and comparative analysis. The size of the obtained chloroplast genomes ranged from 154 673 to 155 760 bp, while their gene contents, gene orders, and GC contents were similar to each other. Comparative genome analysis supports chloroplast maternal inheritance. However, we identified 51 indels and 292 SNP genetic variants in the chloroplast genome of the allopolyploid C. ×hytivus relative to its female parent C. hystrix. Nine intergenic regions with rich variation were identified through comparative analysis of the chloroplast genomes within the subgenus Cucumis. The phylogenetic network based on the chloroplast genome sequences clarified the evolution and taxonomic position of the synthetic allotetraploid C. ×hytivus. The results of this study provide us with an insight into the changes of organelle genome after allopolyploidization, and a new understanding of the cytonuclear evolution.


Asunto(s)
Cloroplastos/genética , Cucumis/genética , Genoma del Cloroplasto/genética , Genoma de Planta , Composición de Base , Núcleo Celular , Cloroplastos/clasificación , ADN de Plantas/genética , Diploidia , Orden Génico , Hibridación Genética , Filogenia , Polimorfismo de Nucleótido Simple , Poliploidía , Secuenciación Completa del Genoma
8.
Genes (Basel) ; 11(12)2020 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322817

RESUMEN

Long non-coding RNAs (lncRNAs) play critical regulatory roles in various biological processes. However, the presence of lncRNAs and how they function in plant polyploidy are still largely unknown. Hence, we examined the profile of lncRNAs in a nascent allotetraploid Cucumis hytivus (S14), its diploid parents, and the F1 hybrid, to reveal the function of lncRNAs in plant-interspecific hybridization and whole genome duplication. Results showed that 2206 lncRNAs evenly transcribed from all 19 chromosomes were identified in C. hytivus, 44.6% of which were from intergenic regions. Based on the expression trend in allopolyploidization, we found that a high proportion of lncRNAs (94.6%) showed up-regulated expression to varying degrees following hybridization. However, few lncRNAs (33, 2.1%) were non-additively expressed after genome duplication, suggesting the significant effect of hybridization on lncRNAs, rather than genome duplication. Furthermore, 253 cis-regulated target genes were predicted for these differentially expressed lncRNAs in S14, which mainly participated in chloroplast biological regulation (e.g., chlorophyll synthesis and light harvesting system). Overall, this study provides new insight into the function of lncRNAs during the processes of hybridization and polyploidization in plant evolution.


Asunto(s)
Cromosomas de las Plantas , Cucumis , Genoma de Planta , Poliploidía , ARN Largo no Codificante , ARN de Planta , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Cucumis/genética , Cucumis/metabolismo , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , ARN de Planta/biosíntesis , ARN de Planta/genética
9.
Genome ; 63(12): 629-641, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32877612

RESUMEN

Transferring desired genes from wild species to cultivars through alien addition lines (AALs) has been shown to be an effective method for genetic improvement. Cucumis hystrix Chakr. (HH, 2n = 24) is a wild species of Cucumis that possesses many resistant genes. A synthetic allotetraploid species, C. hytivus (HHCC, 2n = 38), was obtained from the cross between cultivated cucumber, C. sativus (CC, 2n = 14), and C. hystrix followed by chromosome doubling. Cucumis sativus - C. hystrix AALs were developed by continuous backcrossing to the cultivated cucumbers. In this study, 10 different types of AALs (CC-H01, CC-H06, CC-H08, CC-H10, CC-H12, CC-H06+H09, CC-H06+H10, CC-H06+H12, CC-H08+H10, CC-H01+H06+H10) were identified based on the analysis of fluorescence in situ hybridization (FISH) and molecular markers specific to C. hystrix chromosomes. And the behavior of the alien chromosomes in three AALs (CC-H01, CC-H06+H10, CC-H01+H06+H10) at meiosis was investigated. The results showed that alien chromosomes paired with C. sativus chromosome in few pollen mother cells (PMCs). Further, disomic alien addition lines (DAALs) carrying a pair of C. hystrix chromosome H10 were screened from the selfed progenies of CC-H10. Chromosome pairing between genomes provides cytological evidence for the possible introgression of alien chromosome segments. The development of AALs could serve as a key step for exploiting and utilizing valuable genes from C. hystrix.


Asunto(s)
Cucumis sativus/genética , Cucumis/genética , Genoma de Planta , Cromosomas de las Plantas , Hibridación Genética , Hibridación Fluorescente in Situ , Meiosis , Fenotipo , Especificidad de la Especie
10.
Plant J ; 102(1): 178-186, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31692131

RESUMEN

Chromosome painting is a powerful technique for chromosome and genome studies. We developed a flexible chromosome painting technique based on multiplex PCR of a synthetic oligonucleotide (oligo) library in cucumber (Cucumis sativus L., 2n = 14). Each oligo in the library was associated with a universal as well as nested specific primers for amplification, which allow the generation of different probes from the same oligo library. We were also able to generate double-stranded labelled oligos, which produced much stronger signals than single-stranded labelled oligos, by amplification using fluorophore-conjugated primer pairs. Oligos covering cucumber chromosome 1 (Chr1) and chromosome 4 (Chr4) consisting of eight segments were synthesized in one library. Different oligo probes generated from the library painted the corresponding chromosomes/segments unambiguously, especially on pachytene chromosomes. This technique was then applied to study the homoeologous relationships among cucumber, C. hystrix and C. melo chromosomes based on cross-species chromosome painting using Chr4 probes. We demonstrated that the probe was feasible to detect interspecies chromosome homoeologous relationships and chromosomal rearrangement events. Based on its advantages and great convenience, we anticipate that this flexible oligo-painting technique has great potential for the studies of the structure, organization, and evolution of chromosomes in any species with a sequenced genome.


Asunto(s)
Pintura Cromosómica/métodos , Cromosomas de las Plantas/genética , Cucumis sativus/genética , Genómica , Reacción en Cadena de la Polimerasa Multiplex , Oligonucleótidos/genética , Cucumis/genética , Biblioteca Genómica , Genómica/métodos , Oligonucleótidos/metabolismo
11.
Genes (Basel) ; 10(11)2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31671713

RESUMEN

Allopolyploids are often faced with the challenge of maintaining well-coordination between nuclear and cytoplasmic genes inherited from different species. The synthetic allotetraploid Cucumis × hytivus is a useful model to explore cytonuclear coevolution. In this study, the sequences and expression of cytonuclear enzyme complex RuBisCO as well as its content and activity in C. × hytivus were compared to its parents to explore plastid-nuclear coevolution. The plastome-coded rbcL gene sequence was confirmed to be stable maternal inheritance, and parental copy of nuclear rbcS genes were both preserved in C. × hytivus. Thus, the maternal plastid may interact with the biparentally inherited rbcS alleles. The expression of the rbcS gene of C-homoeologs (paternal) was significantly higher than that of H-homoeologs (maternal) in C. × hytivus (HHCC). Protein interaction prediction analysis showed that the rbcL protein has stronger binding affinity to the paternal copy of rbcS protein than that of maternal copy in C. × hytivus, which might explain the transcriptional bias of the rbcS homoeologs. Moreover, both the activity and content of RuBisCO in C. × hytivus showed mid-parent heterosis. In summary, our results indicate a paternal transcriptional bias of the rbcS genes in C. × hytivus, and we found new nuclear-cytoplasmic combination may be one of the reasons for allopolyploids heterosis.


Asunto(s)
Cucumis/genética , Poliploidía , Ribulosa-Bifosfato Carboxilasa/genética , Alelos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Quimera/genética , Citoplasma/metabolismo , Citosol/metabolismo , Evolución Molecular , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Plastidios/genética
12.
BMC Plant Biol ; 19(1): 471, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694540

RESUMEN

BACKGROUND: Meiosis of newly formed allopolyploids frequently encounter perturbations induced by the merging of divergent and hybridizable genomes. However, to date, the meiotic properties of allopolyploids with dysploid parental karyotypes have not been studied in detail. The allotetraploid Cucumis ×hytivus (HHCC, 2n = 38) was obtained from interspecific hybridization between C. sativus (CC, 2n = 14) and C. hystrix (HH, 2n = 24) followed by chromosome doubling. The results of this study thus offer an excellent opportunity to explore the meiotic properties of allopolyploids with dysploid parental karyotypes. RESULTS: In this report, we describe the meiotic properties of five chromosomes (C5, C7, H1, H9 and H10) and two genomes in interspecific hybrids and C. ×hytivus (the 4th and 14th inbred family) through oligo-painting and genomic in situ hybridization (GISH). We show that 1) only two translocations carrying C5-oligo signals were detected on the chromosomes C2 and C4 of one 14th individual by the karyotyping of eight 4th and 36 14th plants based on C5- and C7-oligo painting, and possible cytological evidence was observed in meiosis of the 4th generation; 2) individual chromosome have biases for homoeologous pairing and univalent formation in F1 hybrids and allotetraploids; 3) extensive H-chromosome autosyndetic pairings (e.g., H-H, 25.5% PMCs) were observed in interspecific F1 hybrid, whereas no C-chromosome autosyndetic pairings were observed (e.g. C-C); 4) the meiotic properties of two subgenomes have significant biases in allotetraploids: H-subgenome exhibits higher univalent and chromosome lagging frequencies than C-subgenome; and 5) increased meiotic stability in the S14 generation compared with the S4 generation, including synchronous meiosis behavior, reduced incidents of univalent and chromosome lagging. CONCLUSIONS: These results suggest that the meiotic behavior of two subgenomes has dramatic biases in response to interspecific hybridization and allopolyploidization, and the meiotic behavior harmony of subgenomes is a key subject of meiosis evolution in C. ×hytivus. This study helps to elucidate the meiotic properties and evolution of nascent allopolyploids with the dysploid parental karyotypes.


Asunto(s)
Cromosomas de las Plantas , Cucumis/genética , Meiosis/genética , Tetraploidía , Pintura Cromosómica , Hibridación Genética , Hibridación Fluorescente in Situ/métodos , Cariotipo , Translocación Genética
13.
Chromosoma ; 126(6): 713-728, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28688040

RESUMEN

Allopolyploidy and homoeologous recombination are two important processes in reshaping genomes and generating evolutionary novelties. Newly formed allopolyploids usually display chromosomal perturbations as a result of pairing errors at meiosis. To understand mechanisms of stabilization of allopolyploid species derived from distant chromosome bases, we investigated mitotic stability of a synthetic Cucumis allotetraploid species in relation to meiosis chromosome behavior. The Cucumis × hytivus is an allotetraploid synthesized from interspecific hybridization between cucumber (Cucumis sativus, 2n = 14) and its wild relative Cucumis hystrix (2n = 24) followed by spontaneous chromosome doubling. In the present study, we analyzed the wild parent C. hystrix and the latest generation of C. hytivus using GISH (genomic in situ hybridization) and cross-species FISH (fluorescence in situ hybridization). The karyotype of C. hystrix was constructed with two methods using cucumber fosmid clones and repetitive sequences. Using repeat-element probe mix in two successive hybridizations allowed for routine identification of all 19 homoeologous chromosomes of allotetraploid C. hytivus. No aneuploids were identified in any C. hytivus individuals that were characterized, and no large-scale chromosomal rearrangements were identified in this synthetic allotetraploid. Meiotic irregularities, such as homoeologous pairing, were frequently observed, resulting in univalent and intergenomic multivalent formation. The relatively stable chromosome structure of the synthetic Cucumis allotetraploid may be explained by more deleterious chromosomal viable gametes compared with other allopolyploids. The knowledge of genetic and genomic information of Cucumis allotetraploid species could provide novel insights into the establishment of allopolyploids with different chromosome bases.


Asunto(s)
Cromosomas de las Plantas , Cucumis/genética , Genoma de Planta , Hibridación Genética , Poliploidía , Hibridación Fluorescente in Situ , Cariotipo , Meiosis , Polen/genética , Secuencias Repetitivas de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA