Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
RSC Adv ; 14(38): 27883-27893, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39224651

RESUMEN

While traditional solutions for disposing of animal manure are limited by their time-consuming nature and inefficiency, the pyrolysis of animal manure into biochar is considered a promising disposal option, offering high-value benefits. However, there are few research studies on the physicochemical properties and potential utilization pathway of grub manure-derived biochar (GB) prepared at different temperatures. In this study, grub manure (GM) was pyrolyzed at 450, 600 and 750 °C, and the effect of pyrolysis temperature on the characteristics and applications of GB was illustrated. The results showed that increasing pyrolysis temperature promoted the formation of an aromatic structure, enhanced the stability, and improved the surface pore structure of GB. The relationship between pyrolysis temperature and C/N-containing functional groups in GB was quantitatively analyzed. In the process of pyrolysis of GM to GB, carbonates first decomposed, and then, C[double bond, length as m-dash]O broke into C-O and finally condensed to form an aromatic ring structure at elevated pyrolysis temperature. Although GM was rich in organic matter and total N/P/K, the potentially toxic elements (PTEs) (Ni, Cu, Cd, Pb, Zn and As) in GM presented potential risk. The hazard of PTEs in GB was significantly decreased after GM was pyrolyzed. Overall, pyrolysis provided an opportunity for the sustainable management of GM, and GB is a multi-purpose and high-value product that could be applied in soil improvement, environmental remediation, and climate change mitigation for achieving sustainable development.

2.
BMC Genomics ; 25(1): 783, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138389

RESUMEN

Soybean represents a vital source of premium plant-based proteins for human nutrition. Importantly, the level of water-soluble protein (WSP) is crucial for determining the overall quality and nutritional value of such crops. Enhancing WSP levels in soybean plants is a high-priority goal in crop improvement. This study aimed to elucidate the genetic basis of WSP content in soybean seeds by identifying quantitative trait loci (QTLs) and set the foundation for subsequent gene cloning and functional analysis. Using 180 F10 recombinant inbred lines generated by crossing the high-protein soybean cultivar JiDou 12 with the wild variety Ye 9, our researcher team mapped the QTLs influencing protein levels, integrating Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and gene expression profiling to identify candidate genes. During the 2020 and 2022 growing seasons, a standard bell-shaped distribution of protein content trait data was observed in these soybean lines. Eight QTLs affecting protein content were found across eight chromosomes, with LOD scores ranging from 2.59 to 7.30, explaining 4.15-11.74% of the phenotypic variance. Notably, two QTLs were newly discovered, one with a elite allele at qWSPC-15 from Ye 9. The major QTL, qWSPC-19, on chromosome 19 was stable across conditions and contained genes involved in nitrogen metabolism, amino acid biosynthesis, and signaling. Two genes from this QTL, Glyma.19G185700 and Glyma.19G186000, exhibited distinct expression patterns at maturity, highlighting the influence of these genes on protein content. This research revealed eight QTLs for WSP content in soybean seeds and proposed a gene for the key QTL qWSPC-19, laying groundwork for gene isolation and enhanced soybean breeding through the use of molecular markers. These insights are instrumental for developing protein-rich soybean cultivars.


Asunto(s)
Mapeo Cromosómico , Glycine max , Sitios de Carácter Cuantitativo , Semillas , Glycine max/genética , Glycine max/metabolismo , Semillas/genética , Semillas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Agua/metabolismo , Solubilidad , Fenotipo
3.
Theor Appl Genet ; 137(9): 211, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210238

RESUMEN

Soybean, a source of plant-derived lipids, contains an array of fatty acids essential for health. A comprehensive understanding of the fatty acid profiles in soybean is crucial for enhancing soybean cultivars and augmenting their qualitative attributes. Here, 180 F10 generation recombinant inbred lines (RILs), derived from the cross-breeding of the cultivated soybean variety 'Jidou 12' and the wild soybean 'Y9,' were used as primary experimental subjects. Using inclusive composite interval mapping (ICIM), this study undertook a quantitative trait locus (QTL) analysis on five distinct fatty acid components in the RIL population from 2019 to 2021. Concurrently, a genome-wide association study (GWAS) was conducted on 290 samples from a genetically diverse natural population to scrutinize the five fatty acid components during the same timeframe, thereby aiming to identify loci closely associated with fatty acid profiles. In addition, haplotype analysis and the Kyoto Encyclopedia of Genes and Genomes pathway analysis were performed to predict candidate genes. The QTL analysis elucidated 23 stable QTLs intricately associated with the five fatty acid components, exhibiting phenotypic contribution rates ranging from 2.78% to 25.37%. In addition, GWAS of the natural population unveiled 102 significant loci associated with these fatty acid components. The haplotype analysis of the colocalized loci revealed that Glyma.06G221400 on chromosome 6 exhibited a significant correlation with stearic acid content, with Hap1 showing a markedly elevated stearic acid level compared with Hap2 and Hap3. Similarly, Glyma.12G075100 on chromosome 12 was significantly associated with the contents of oleic, linoleic, and linolenic acids, suggesting its involvement in fatty acid biosynthesis. In the natural population, candidate genes associated with the contents of palmitic and linolenic acids were predominantly from the fatty acid metabolic pathway, indicating their potential role as pivotal genes in the critical steps of fatty acid metabolism. Furthermore, genomic selection (GS) for fatty acid components was conducted using ridge regression best linear unbiased prediction based on both random single nucleotide polymorphisms (SNPs) and SNPs significantly associated with fatty acid components identified by GWAS. GS accuracy was contingent upon the SNP set used. Notably, GS efficiency was enhanced when using SNPs derived from QTL mapping analysis and GWAS compared with random SNPs, and reached a plateau when the number of SNP markers exceeded 3,000. This study thus indicates that Glyma.06G221400 and Glyma.12G075100 are genes integral to the synthesis and regulatory mechanisms of fatty acids. It provides insights into the complex biosynthesis and regulation of fatty acids, with significant implications for the directed improvement of soybean oil quality and the selection of superior soybean varieties. The SNP markers delineated in this study can be instrumental in establishing an efficacious pipeline for marker-assisted selection and GS aimed at improving soybean fatty acid components.


Asunto(s)
Mapeo Cromosómico , Ácidos Grasos , Glycine max , Sitios de Carácter Cuantitativo , Glycine max/genética , Glycine max/metabolismo , Ácidos Grasos/metabolismo , Mapeo Cromosómico/métodos , Fenotipo , Polimorfismo de Nucleótido Simple , Haplotipos , Fitomejoramiento , Genes de Plantas , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo
4.
Materials (Basel) ; 17(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38930198

RESUMEN

A combined stamping-bulging forming process was proposed to achieve high-precision forming of large-diameter, ultra-thin-walled, superalloy welded S-type corrugated diaphragms. The underlying principle is to enhance the diaphragm's forming accuracy by increasing the plastic deformation region and reducing springback. Using the ABAQUS version 6.14 finite element analysis software, finite element models were constructed for the stamping, hydraulic bulging, and combined stamping-bulging forming processes of the welded S-type metal corrugated diaphragms. A comparative analysis was conducted on the forming processes of the welded S-type metal corrugated diaphragms under the three forming methods, focusing on equivalent stress, distribution of wall thickness, and forming accuracy. This analysis determined the optimal forming process and the corresponding process parameters for superalloy welded S-type metal corrugated diaphragms. The results show that under a constant drawing force, as the bulging pressure increases, the plastic deformation of the straight sections of the diaphragm becomes more pronounced, resulting in improved shape accuracy. The combined stamping-bulging forming process guarantees the highest degree of shape accuracy for the diaphragm. The optimal process parameters were identified as a 30 t force and a 5 MPa pressure, with a maximum shape error of 0.02 mm. Concerning a plate thickness of 0.3 mm, the maximum deviation rate was found to be 6.7%, which represents a 30% improvement over traditional stamping processes. The maximum wall thinning rate was found to be 3.3%, a 1% reduction compared to traditional stamping processes, confirming the process's feasibility.

5.
Cell Rep ; 43(4): 114111, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38615319

RESUMEN

The efficacy of immunotherapy against colorectal cancer (CRC) is impaired by insufficient immune cell recruitment into the tumor microenvironment. Our study shows that targeting circDNA2v, a circular RNA commonly overexpressed in CRC, can be exploited to elicit cytotoxic T cell recruitment. circDNA2v functions through binding to IGF2BP3, preventing its ubiquitination, and prolonging the IGF2BP3 half-life, which in turn sustains mRNA levels of the protooncogene c-Myc. Targeting circDNA2v by gene silencing downregulates c-Myc to concordantly induce tumor cell senescence and the release of proinflammatory mediators. Production of CXCL10 and interleukin-9 by CRC cells is elicited through JAK-STAT1 signaling, in turn promoting the chemotactic and cytolytic activities of CD8+ T cells. Clinical evidence associates increased circDNA2v expression in CRC tissues with reductions in CD8+ T cell infiltration and worse outcomes. The regulatory relationship between circDNA2v, cellular senescence, and tumor-infiltrating lymphocytes thus provides a rational approach for improving immunotherapy in CRC.


Asunto(s)
Senescencia Celular , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , ARN Circular/genética , ARN Circular/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Línea Celular Tumoral , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Ratones , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral/inmunología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Factor de Transcripción STAT1/metabolismo
6.
Front Bioeng Biotechnol ; 12: 1361617, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449675

RESUMEN

Research and development in the field of micro/nano-robots have made significant progress in the past, especially in the field of clinical medicine, where further research may lead to many revolutionary achievements. Through the research and experiment of microrobots, a controllable drug delivery system will be realized, which will solve many problems in drug treatment. In this work, we design and study the ability of magnetic-driven hydrogel microrobots to carry Lycorine hydrochloride (LH) to inhibit colorectal cancer (CRC) cells. We have successfully designed a magnetic field driven, biocompatible drug carrying hydrogel microsphere robot with Fe3O4 particles inside, which can achieve magnetic field response, and confirmed that it can transport drug through fluorescence microscope. We have successfully demonstrated the motion mode of hydrogel microrobots driven by a rotating external magnetic field. This driving method allows the microrobots to move in a precise and controllable manner, providing tremendous potential for their use in various applications. Finally, we selected drug LH and loaded it into the hydrogel microrobot for a series of experiments. LH significantly inhibited CRC cells proliferation in a dose- and time-dependent manner. LH inhibited the proliferation, mobility of CRC cells and induced apoptosis. This delivery system can significantly improve the therapeutic effect of drugs on tumors.

7.
Curr Pharm Biotechnol ; 25(15): 2032-2045, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38310446

RESUMEN

BACKGROUND: Diabetes retinopathy (DR) is one of the most common microvascular consequences of diabetes, and the economic burden is increasing. Our aim is to decipher the relevant mechanisms of immune-related gene features in DR and explore biomarkers targeting DR. Provide a basis for the treatment and prevention of DR. METHODS: The immune infiltration enrichment score of DR patients was evaluated from the single- cell RNA sequencing dataset, and the samples were divided into low immune subgroups and high immune subgroups based on this result. Through weighted gene correlation network analysis, differentially expressed genes (DEGs) between two subgroups were identified and crossed with genes with the strongest immune association, resulting in significant key genes. Then divide the DR individuals into two immune related differentially expressed gene (IDEG) clusters, A and B. Submit cross DEGs between two clusters through Gene Set Enrichment Analysis (GSEA) to further explore their functions. A protein-protein interaction (PPI) network of IDEG was established to further identify central genes associated with DR. Use the discovered central genes to predict the regulatory network involved in the pathogenesis of DR. Then, the role of the identified hub gene in the pathogenesis of DR was further studied through in vitro experiments. RESULTS: We found that the immune scores of DR and control groups were different, and 27 IDEGs were found in the DR subgroup. Compared with cluster A, the proportion of cytotoxic lymphocytes, B lineage, monocyte lineage, and fibroblasts in DR patients in cluster B is significantly enriched. GSEA indicates that these genes are associated with T cell activation, regulation of immune response processes, lymphocyte-mediated immunity, TNF signaling pathway, and other signaling pathways. The PPI network subsequently identified 10 hub genes in DR, including SIGLEC10, RGS10, PENK, FGD2, LILRA6, CIITA, EGR2, SIGLEC7, LILRB1, and CD300LB. The upstream regulatory network and lncRNA miRNA mRNA ceRNA network of these hub genes were ultimately constructed. The discovery and identification of these genes will provide biomarkers for targeted prediction and treatment of DR. CONCLUSION: By integrating bioinformatics analysis and in vitro experiments, we have identified a set of central genes, indicating that these genes can serve as potential biomarkers for DR, which may be promising targets for future DR immunotherapy interventions.


Asunto(s)
Retinopatía Diabética , Redes Reguladoras de Genes , Mapas de Interacción de Proteínas , Humanos , Retinopatía Diabética/genética , Retinopatía Diabética/inmunología , Mapas de Interacción de Proteínas/genética , Simulación por Computador , Perfilación de la Expresión Génica/métodos , Transcriptoma/genética , Biomarcadores/metabolismo
8.
BMC Urol ; 23(1): 199, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049825

RESUMEN

BACKGROUND: The prevalence of bladder urothelial carcinoma (BLCA) is significant on a global scale. Anoikis is a type of procedural cell death that has an important role in tumor invasion and metastasis. The advent of single-cell RNA sequencing (scRNA-seq) approaches has revolutionized the genomics field by providing unprecedented opportunities for elucidating cellular heterogeneity. Understanding the mechanisms associated with anoikis in BLCA is essential to improve its survival rate. METHODS: Data on BLCA and clinical information were acquired from the databases of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). ARGs were obtained from Genecards and Harmonizome databases. According to univariate Cox regression analysis, the least absolute shrinkage and selection operator (LASSO) algorithm was utilized to select the ARGs associated with the overall rate (OS). A multivariate Cox regression analysis was carried out to identify eight prognostic ARGs, leading to the establishment of a risk model. The OS rate of BLCA patients was evaluated using Kaplan-Meier survival analysis. To explore the molecular mechanism in low- and high-risk groups, we employed Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSVA). Immune infiltration landscape estimation was performed using ESTIMATE, CIBERSOT, and single sample gene set enrichment analysis (ssGSEA) algorithms. Patients were categorized into different subgroups through consensus clustering analysis. We employed biological functional enrichment analysis and conducted immune infiltration analysis to examine the disparities in potential biological functions, infiltration of immune cells, immune activities, and responses to immunotherapy. RESULTS: We identified 647 ARGs and 37 survival-related genes. We further developed a risk scoring model to quantitatively assess the predictive capacity of ARGs. The high-risk score group exhibited an unfavorable prognosis, whereas the low-risk score group demonstrated a converse effect. We also found that the two groups of patients might respond differently to immune targets and anti-tumor drugs. CONCLUSION: The nomogram with 8 ARGs may help guide treatment of BLCA. The systematic assessment of risk scores can help to design more individualized and precise treatment strategies for BLCA patients.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Pronóstico , Anoicis/genética , Nomogramas
9.
Exp Anim ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37952975

RESUMEN

Asthma is the most common chronic disease in the respiratory system of children caused by abnormal immunity that responses to common antigens. Lonicerin exerts anti-inflammatory activity in other inflammatory models through targeting enhancer of zeste homolog 2 (EZH2) that is related to asthma. We sought to explore the role and mechanism of lonicerin in regulating allergic airway inflammation. Mice were intraperitoneally injected 10 µg ovalbumin (OVA) on postnatal day 5 (P5) and P10, and then inhaled 3% aerosolized OVA for 10 min every day on P18-20, to establish asthmatic mice model. Lonicerin (10 or 30 mg/kg) was given to mice by intragastric administration on P16-P20. Notably, the administration of lonicerin amended infiltration of inflammatory cells and mucus hypersecretion. OVA-specific IgE level, inflammatory cell count and inflammatory cytokines in asthmatic mice were reduced after lonicerin treatment. Moreover, it suppressed the activity of EZH2 and activation of nuclear factor-kappa B (NF-ĸB) as evidenced by decreasing tri-methylation of histone H3 at lysine 27 and reducing nuclear translocation of NF-κB p65. In a word, Lonicerin may attenuate asthma by inhibiting EZH2/NF-κB signaling pathway.

10.
Ecotoxicol Environ Saf ; 266: 115569, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37832487

RESUMEN

To determine the fates of the persistent pollutants cadmium (Cd) and micro-plastics in agricultural soils, an in-depth understanding of the interactions between Cd and mulching film is required. In the present work, pot experiments are conducted under natural conditions to study the influence of various Cd concentrations on the aging process of polyethylene mulching film in soil collected from Changzhi, Shanxi Province. The results indicate that during 150 days, the aging degree of the mulch film increases gradually as the increased Cd concentration in the soil. Further, the results of attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectrometry and X-ray photoelectron spectroscopy (XPS) demonstrate that the average vinyl index (VI) of the aging mulch film increases from 1.29 to 1.82, while the oxygen-to-carbon (O/C) ratio of the mulch film decreases significantly from 0.344 to 0.045, as the Cd concentration is increased from 0 to 10 mg kg-1. When the aging time exceeds 90 days, the oxygen-containing functional groups (C-O and CO) generated consumed by the adsorbed Cd. In addition, electron paramagnetic resonance (EPR) measurements indicate that Cd both enhances the formation of hydroxyl radical (·OH) on the surface of the mulch film and prevents the combination of ·OH and electrons, thereby accelerating the aging of the mulch. Hence, the present study indicates that the presence of Cd will hasten the decomposition of mulch, which will inevitably result in the faster release of micro-plastics from the mulch into the soil environment.


Asunto(s)
Cadmio , Polietileno , Microplásticos , Suelo , Agricultura/métodos , Plásticos , Oxígeno
11.
Front Bioeng Biotechnol ; 11: 1219054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441195

RESUMEN

As nanotechnology develops in the fields of mechanical engineering, electrical engineering, information and communication, and medical care, it has shown great promises. In recent years, medical nanorobots have made significant progress in terms of the selection of materials, fabrication methods, driving force sources, and clinical applications, such as nanomedicine. It involves bypassing biological tissues and delivering drugs directly to lesions and target cells using nanorobots, thus increasing concentration. It has also proved useful for monitoring disease progression, complementary diagnosis, and minimally invasive surgery. Also, we examine the development of nanomedicine and its applications in medicine, focusing on the use of nanomedicine in the treatment of various major diseases, including how they are generalized and how they are modified. The purpose of this review is to provide a summary and discussion of current research for the future development in nanomedicine.

12.
J Innate Immun ; 15(1): 614-628, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37385228

RESUMEN

PR domain-containing 1 with zinc finger domain (PRDM1) has been reported as a promoter of inflammation, which is a critical process involved in the pathogenesis of acute gouty arthritis. Herein, we sought to ascertain the function of PRDM1 in the development of acute gouty arthritis and related mechanisms. At first, peripheral blood-derived monocytes from patients with acute gouty arthritis and healthy individuals were collected as experimental samples. Then, macrophages were induced from monocytes using phorbol myristate acetate (PMA). The expression patterns of PRDM1, sirtuin 2 (SIRT2), and NLR family, pyrin domain-containing 3 (NLRP3) were characterized by RT-qPCR and Western blot assay. PMA-induced macrophages were stimulated by monosodium urate (MSU) for in vitro experimentation. Meanwhile, a murine model of MSU-induced acute gouty arthritis was established for in vivo validation. PRDM1 was highly expressed while SIRT2 poorly expressed in patients with acute gouty arthritis. Loss of PRDM1 could reduce NLRP3 inflammasome and mature IL-1ß levels and downregulate inflammatory cytokines in macrophages, which contributed to protection against acute gouty arthritis. Furthermore, results showed that PRDM1 could inhibit SIRT2 expression via binding to the deacetylase SIRT2 promoter. Finally, the in vivo experiments demonstrated that PRDM1 increased NLRP3 inflammasome and mature IL-1ß through transcriptional inhibition of SIRT2, whereby aggravating MSU-induced acute gouty arthritis. To sum up, PRDM1 increased NLRP3 inflammasome through inhibiting SIRT2, consequently aggravating MSU-induced acute gouty arthritis.


Asunto(s)
Artritis Gotosa , Animales , Humanos , Ratones , Artritis Gotosa/inducido químicamente , Artritis Gotosa/metabolismo , Artritis Gotosa/patología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Sirtuina 2/genética , Ácido Úrico
13.
Curr Biol ; 33(12): 2478-2490.e5, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37301200

RESUMEN

Symbiotic nitrogen fixation (SNF) provides much of the N utilized by leguminous plants throughout growth and development. Legumes may simultaneously establish symbiosis with different taxa of microbial symbionts. Yet, the mechanisms used to steer associations toward symbionts that are most propitious across variations in soil types remain mysterious. Here, we demonstrate that GmRj2/Rfg1 is responsible for regulating symbiosis with multiple taxa of soybean symbionts. In our experiments, the GmRj2/Rfg1SC haplotype favored association with Bradyrhizobia, which is mostly distributed in acid soils, whereas the GmRj2/Rfg1HH haplotype and knockout mutants of GmRj2/Rfg1SC associated equally with Bradyrhizobia and Sinorhizobium. Association between GmRj2/Rfg1 and NopP, furthermore, appeared to be involved in symbiont selection. Furthermore, geographic distribution analysis of 1,821 soybean accessions showed that GmRj2/Rfg1SC haplotypes were enriched in acidic soils where Bradyrhizobia were the dominant symbionts, whereas GmRj2/Rfg1HH haplotypes were most prevalent in alkaline soils dominated by Sinorhizobium, and neutral soils harbored no apparent predilections toward either haplotype. Taken together, our results suggest that GmRj2/Rfg1 regulates symbiosis with different symbionts and is a strong determinant of soybean adaptability across soil regions. As a consequence, the manipulation of the GmRj2/Rfg1 genotype or application of suitable symbionts according to the haplotype at the GmRj2/Rfg1 locus might be suitable strategies to explore for increasing soybean yield through the management of SNF.


Asunto(s)
Bradyrhizobium , Glycine max , Sinorhizobium , Glycine max/genética , Glycine max/microbiología , Glycine max/fisiología , Simbiosis , Fijación del Nitrógeno , Microbiología del Suelo , Suelo/química , Bradyrhizobium/fisiología , Sinorhizobium/fisiología
14.
Exp Ther Med ; 25(6): 289, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37206550

RESUMEN

IL-37 is a newly discovered inflammatory factor. However, the protective effect and underlying mechanisms of IL-37 on atherosclerosis remain unclear. In the present study, IL-37 was used for intraperitoneal injection in diabetic ApoE-/- mice caused by streptozotocin. High glucose (HG)/ox-LDL was used to stimulate THP-1 original macrophage followed by IL-37 pretreatment in vitro. The atheromatous plaque area, oxidative stress and inflammation levels in ApoE-/- mice were evaluated, and the level of macrophage ferroptosis was detected in vivo and in vitro. It was identified that IL-37 treatment significantly decreased plaque area in diabetic ApoE-/- mice. IL-37 not only improved blood lipid levels in mice, but also reduced serum levels of inflammatory factors including IL-1ß and IL-18. Furthermore, IL-37 increased GPX4 and nuclear factor erythroid 2-related factor 2 (NRF2) in the aorta of diabetic mice. In vitro experiment revealed that IL-37 inhibited HG/ox-LDL-induced ferroptosis in macrophages, as evidenced by improved cell membrane oxidation, reduced malondialdehyde production and increased GPX4 expression. Moreover, it was also found that IL-37 enhanced the nuclear translocation of NRF2 in macrophages, while ML385, a specific NRF2 inhibitor, significantly attenuated the protective effect of IL-37 on macrophage ferroptosis caused by HG/ox-LDL. In conclusion, IL-37 suppressed macrophage ferroptosis to attenuate atherosclerosis progression via activating the NRF2 pathway.

15.
Adv Mater ; 35(26): e2300616, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36933240

RESUMEN

Currently available encapsulating materials for white light-emitting diodes (WLEDs) have certain limitations, such as the toxicity of phosphors and the non-recyclable nature of the encapsulating materials. In this study, relatively promising encapsulating materials with two significant advantages are developed. First, the chips can be directly encapsulated without phosphors using luminescent encapsulating materials. Second, the encapsulating materials can be reprocessed for recycling via intramolecular catalysis. To this end, blue-light-emitting vitrimers (BEVs) are prepared by the reaction of epoxy resin with amines and are found to exhibit strong blue emission and fast stress relaxation via internal catalysis. To obtain white-light emission, a well-designed yellow component, perylenetetracarboxylic dianhydride, is grafted into the BEVs to generate white-light-emitting vitrimers (WEVs). A rare synergy of blue- and yellow-light emission affords white-light emission. When the WEV is used as an encapsulating adhesive for 365 nm LED chips without inorganic phosphors, stable white light with CIE coordinates (0.30, 0.32) is successfully achieved, indicating a promising future for WLED encapsulation.

16.
Reg Anesth Pain Med ; 48(2): 61-66, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36351740

RESUMEN

AIMS: We compared analgesic outcomes between single-orifice and multiorifice wire-reinforced catheters under 480 mL/hour delivery rate with programmed intermittent epidural bolus administration. METHODS: Between August and November 2021, 182 nulliparous and healthy women with singleton pregnancy, 2-5 cm cervical dilation, and requesting neuraxial analgesia were randomized to receive either single-orifice or multiorifice catheters. Epidural analgesia was initiated and maintained with 0.1% ropivacaine and 0.3 µg/mL sufentanil. Programmed intermittent epidural bolus volume of 10 mL was administered every 45 min at 480 mL/hour beginning immediately after the test dose. Primary outcome was the percentage of parturients in the two groups with adequate analgesia 20 min after the initial bolus. RESULTS: Compared with multiorifice catheters, single-orifice catheters were associated with a higher proportion of parturients with adequate analgesia (71.8% vs 56.0%, respectively; 95% CI 1.3% to 29%, p=0.03) and more frequent S2 sensory blockade (37.6% vs 22.6%, respectively; 95% CI -30% to 1%, p=0.03) 20 min after block initiation. Median time (IQR) to adequate analgesia was 12 (8-30) min and 20 (10-47) min with single-orifice and multiorifice catheters, respectively (95% CI 0.1 to 0.7 min, p<0.01). The median (IQR) ropivacaine consumption per hour was higher in parturients receiving multiorifice catheters than those with single-orifice catheters (15.3 (13.3-17.0) mg/hour vs 13.3 (13.3-15.4) mg/hour, respectively; 95% CI 0.2 to 0.8 mg/hour, p<0.001). CONCLUSION: Single-orifice catheters used for programmed intermittent epidural bolus at 480 mL/hour for epidural labor analgesia had improved analgesic efficacy than multiorifice catheters. TRIAL REGISTRATION NUMBER: ChiCTR2100049872.


Asunto(s)
Analgesia Epidural , Analgesia Obstétrica , Embarazo , Femenino , Humanos , Ropivacaína , Anestésicos Locales , Analgésicos , Catéteres , Dolor
17.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499599

RESUMEN

MYB-CC transcription factors (TFs) are essential for plant growth and development. Members of the MYB-CC subfamily with long N terminal domains, such as phosphate starvation response 1 (PHR1) or PHR1-like TFs, have well documented functions, while those with short N terminal domains remain less understood. In this study, we identified a nodule specific MYB-CC transcription factor 1 (GmPHR1) in soybean that is different from other canonical PHR family genes in that GmPHR1 harbors a short N terminal ahead of its MYB-CC domain and was highly induced by rhizobium infection. The overexpression of GmPHR1 dramatically increased the ratio of deformed root hairs, enhanced subsequent soybean nodulation, and promoted soybean growth in pot experiments. The growth promotion effects of GmPHR1 overexpression were further demonstrated in field trails in which two GmPHR1-OE lines yielded 10.78% and 8.19% more than the wild type line. Transcriptome analysis suggested that GmPHR1 overexpression led to global reprogramming, with 749 genes upregulated and 279 genes downregulated, especially for genes involved in MYB transcription factor activities, root growth, and nutrient acquisition. Taken together, we conclude that GmPHR1 is a key gene involved in the global regulation of nodulation, root growth, and nutrient acquisition in soybeans, and is thus a promising candidate gene to target for soybean yield enhancement.


Asunto(s)
Glycine max , Rhizobium , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Rhizobium/metabolismo , Nodulación de la Raíz de la Planta/genética
18.
Sensors (Basel) ; 22(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36236385

RESUMEN

Low Earth orbit satellite constellation networks (LSCNs) have attracted significant attention around the world due to their great advantages of low latency and wide coverage, but they also bring new challenges to network security. Distributed denial of service (DDoS) attacks are considered one of the most threatening attack methods in the field of Internet security. In this paper, a space-time graph model is built to identify the key nodes in LSCNs, and a DDoS attack is adopted as the main means to attack the key nodes. The scenarios of two-satellite-key-node and multi-satellite-key-node attacks are considered, and their security performance against DDoS attacks is also analyzed. The simulation results show that the transmission path of key satellite nodes will change rapidly after being attacked, and the average end-to-end delay and packet loss are linearly related to the number of key-node attacks. This work provides a comprehensive analysis of the security performance of LSCNs under a DDoS attack and theoretical support for future research on anti-DDoS attack strategies for LSCNs.

19.
Plant Physiol Biochem ; 190: 90-100, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108356

RESUMEN

Plants exhibit lower nitrogen use efficiency (NUE) under N-limitation conditions. Although the function of calcium (Ca) has been widely studied in plants, it remains to be explored whether regulation of nitrate uptake and reduction is needed. A hydroponics experiment on adzuki beans (Vigna angularis Willd.) was used as a test material to determine the interactions between Ca and three levels of nitrogen supply. The height of the plant, the leaf area per plant, the biomass of the plant, the morphology of the roots, the hydraulic conductivity of the roots, the level of gas exchange, and the level of N metabolism of the adzuki beans were evaluated. Furthermore, RT-qPCR was conducted to explore the expression of genes related to nitrate transporter responses to Ca under N-limitation stress conditions. The rate of accumulation of N in plant tissue increased with the application of Ca. However, plant biomass, photosynthetic parameters, and root activity peaked for Ca2+ supply under N-marginal conditions. Further investigation revealed that the activities of nitrate reductase and glutamine synthetase were relatively high. The transcription of the nitrate transporter (VaNRT1.1; VaNRT2.5) was up-regulated in the roots of the Ca-treated plants. Both N-marginal conditions and N deficiency inhibit N absorption and utilization. The favorable effects of Ca on seedling growth and N metabolism under N-marginal conditions were more significant than those under N-deficiency conditions. The supply of Ca2+ is optimal, as it increases NUE by enhancing photosynthesis, N-metabolizing enzyme activities, and NO3 uptake and transport under N-marginal conditions.


Asunto(s)
Plantones , Vigna , Calcio/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Plantones/metabolismo , Vigna/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA