Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chim Acta ; 1164: 338521, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33992217

RESUMEN

Conventional UV/Vis absorption spectroscopy is an economical and user-friendly technique for online monitoring, however, by which some electroactive chemicals are hardly determined in the presence of fluctuating background due to the formation of colored chemicals. Here, we propose an electrochemical difference absorption spectroscopy (EDAS) to accurately quantify colorless chemicals based on visible color change via electrolysis with strong variation in the background. EDAS is realized by twin spectroelectrochemical flow cells system, replacing the two cuvette cells of a dual beam spectrophotometer. Each cell consists of a three-electrode system, quartz windows and a thin flow channel. Flowing of analyte from one cell (reference cell) to the other (sample cell) can eliminate the influence of colored interferents even while their concentrations are changing. When different potentials are applied on the sample and reference cells respectively, electrolysis occurs and colored products flowing through quartz windows can absorb the incident light, resulting in difference absorption spectra induced from potential difference. We find that steady-state difference absorbance (ΔA) at characteristic wavelength is linearly changed with sample concentrations. EDAS is firstly verified by Fe(CN)64- at different potentials and flow rates, in good agreements with a simplified theory that describes linear relationship between ΔA and analyte concentration. Then EDAS is used to determine Cu(I) in Cu(I)-Cu(II) mixed solutions and tetramethylbenzidine in its partially oxidized solutions to illustrate the powerful ability to detect colorless chemicals with varied background, implying its promising potential applications in the chemical industry.

2.
Anal Chem ; 91(24): 15791-15797, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31729866

RESUMEN

The direct qualitative identification of pure liquids in laboratories and in security checks is generally performed by the detection of the refractive index or the permittivity. However, refractive indices are strongly influenced by temperature, while the permittivities of some organics are difficult to differentiate. On the other hand, the quantitative monitoring of samples with high concentration in plating baths and in chemical production lines are generally performed via a "Sampling-Dilution-Analysis" approach because of significant deviations from the linear range at high concentration, which makes the real-time monitoring of concentrated samples difficult. Here, we propose a self-reference analysis (SRA) method to directly analyze pure liquids and concentrated samples based on temperature difference absorption spectra (TDAS) without the need for dilution. This method was performed by simultaneously scanning the spectra of the reference and the sample, which are both obtained from the same analyte for detection but are at different temperatures. Compared to conventional absorption spectra with a blank reference, the red-shifted peak wavelengths of TDAS enable the detection of many far UV absorptive compounds in the near-ultraviolet region (λ > 190 nm). More importantly, organic compounds with similar structures can be easily distinguished. In addition, TDAS can also be used for the quantitative detection of concentrated analytes. The proposed SRA-TDAS method is a rapid and effective method; this approach does not require dilution and utilizes a self-reference, implying the wide potential applicability in security checks, and the real-time monitoring of concentrated compounds in chemical production lines.

3.
Anal Chem ; 89(24): 13429-13433, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29168378

RESUMEN

Conventional absorption spectroscopy (CAS) with a blank reference has only a slight capacity to detect high concentrations at characteristic wavelengths owing to the corresponding large molar absorption coefficient (ε) on the scale of 103 or 104 cm-1 M-1. To monitor concentrated analytes as high as the molar range in a plating bath and on a chemical production line, we propose a new approach using sideband differential absorption spectroscopy (SDAS). SDAS is obtained by subtracting the absorption spectra of the samples, A(λ,Cx), from that of a reference containing a concentrated standard analyte, A(λ,Cref>Cx), resulting in concave spectra with peaks at the sideband of conventional spectra with generally low ε values on the scale of 100 cm-1 M-1 or less. The negative absorbance changes linearly with the sample concentration at a certain peak wavelength, obeying Lambert-Beer's law. In this work, SDAS was obtained and verified using inorganic and organic substances, such as chromate potassium, rhodamine B, and paracetamol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA