Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Talanta ; 281: 126865, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265422

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) poses a significant global health concern, necessitating precise diagnostic tools and effective treatment strategies. Peroxynitrite (ONOO-), a reactive oxygen species, plays a pivotal role in NAFLD pathogenesis, highlighting its potential as a biomarker for disease diagnosis and therapeutic evaluation. This study reports on the development of a near-infrared (NIR) fluorescent probe, designated DRP-O, for the selective detection of ONOO- with high sensitivity and photostability. DRP-O exhibits rapid response kinetics (within 2 min) and an impressive detection limit of 2.3 nM, enabling real-time monitoring of ONOO- dynamics in living cells. Notably, DRP-O demonstrates excellent photostability under continuous laser irradiation, ensuring reliable long-term monitoring in complex biological systems. We apply DRP-O to visualize endogenous ONOO- in living cells, demonstrating its potential for diagnosing and monitoring NAFLD-related oxidative stress. Furthermore, DRP-O effectively evaluates the efficacy of therapeutic drugs in NAFLD cell models, underscoring its potential utility in drug screening studies. Moreover, we confirm DRP-O to enable selective identification of fatty liver tissues in a mouse model of NAFLD, indicating its potential for the early diagnosis of NAFLD. Collectively, DRP-O represents a valuable tool for studying ONOO- dynamics, evaluating drug efficacy, and diagnosing NAFLD, offering insights into novel therapeutic strategies for this prevalent liver disorder.

2.
Food Chem ; 452: 139557, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728895

RESUMEN

ß-Galactosidase (ß-gal), an enzyme related to cell wall degradation, plays an important role in regulating cell wall metabolism and reconstruction. However, activatable fluorescence probes for the detection and imaging of ß-gal fluctuations in plants have been less exploited. Herein, we report an activatable fluorescent probe based on intramolecular charge transfer (ICT), benzothiazole coumarin-bearing ß-galactoside (BC-ßgal), to achieve distinct in situ imaging of ß-gal in plant cells. It exhibits high sensitivity and selectivity to ß-gal with a fast response (8 min). BC-ßgal can be used to efficiently detect the alternations of intracellular ß-gal levels in cabbage root cells with considerable imaging integrity and imaging contrast. Significantly, BC-ßgal can assess ß-gal activity in cabbage roots under heavy metal stress (Cd2+, Cu2+, and Pb2+), revealing that ß-gal activity is negatively correlated with the severity of heavy metal stress. Our work thus facilitates the study of ß-gal biological mechanisms.


Asunto(s)
Brassica , Colorantes Fluorescentes , Metales Pesados , Raíces de Plantas , beta-Galactosidasa , beta-Galactosidasa/metabolismo , beta-Galactosidasa/química , Brassica/química , Brassica/metabolismo , Brassica/enzimología , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Colorantes Fluorescentes/química , Metales Pesados/metabolismo , Metales Pesados/análisis , Imagen Óptica , Proteínas de Plantas/metabolismo
3.
Anal Chem ; 96(8): 3436-3444, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38372258

RESUMEN

Cerebral ischemia-reperfusion injury (CIRI), a cause of cerebral dysfunction during cerebral infarction treatment, is closely associated with mitochondrial viscosity and hydrogen peroxide (H2O2). However, the accurate measurement of mitochondrial viscosity and H2O2 levels in CIRI is challenging because of the lack of sufficient selectivity and blood-brain barrier (BBB) penetration of existing monitoring tools related to CIRI, hampering the exploration of the role of mitochondrial viscosity and H2O2 in CIRI. To address this issue, we designed an activatable fluorescent probe, mitochondria-targeting styryl-quinolin-ium (Mito-IQS), with excellent properties including high selectivity, mitochondrial targeting, and BBB penetration, for the visualization of mitochondrial viscosity and H2O2 in the brain. Based on the real-time monitoring capabilities of the probe, bursts of mitochondrial viscosity and H2O2 levels were visualized during CIRI. This probe can be used to monitor the therapeutic effects of butylphthalein treatment. More importantly, in vivo experiments further confirmed that CIRI was closely associated with the mitochondrial viscosity and H2O2 levels. This discovery provides new insights and tools for the study of CIRI and is expected to accelerate the process of CIRI diagnosis, treatment, and drug design.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Humanos , Peróxido de Hidrógeno , Colorantes Fluorescentes , Viscosidad , Mitocondrias
4.
Analyst ; 148(18): 4331-4338, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37547973

RESUMEN

The excessive formation of peroxynitrite (ONOO-) in mitochondria has been implicated in various pathophysiological processes and diseases. However, owing to short emission wavelengths and small Stokes shifts, previously reported fluorescent probes pose significant challenges for mitochondrial ONOO- imaging in biological systems. In this study, a near-infrared (NIR) fluorescent probe, denoted as DCO-POT, is designed for the visual monitoring of mitochondrial ONOO-, displaying a remarkable Stokes shift of 170 nm. The NIR fluorophore of DCO-CHO is released by DCO-POT upon the addition of ONOO-, resulting in off-on NIR fluorescence at 670 nm. This phenomenon facilitates the high-resolution confocal laser scanning imaging of ONOO- generated in biological systems. The practical applications of DCO-POT as an efficient fluorescence imaging tool are verified in this study. DCO-POT enables the fluorometric visualization of ONOO- in organelles, cells, and organisms. In particular, ONOO- generation is analyzed during cellular and organism-level (zebrafish) inflammation during ferroptosis and in an Alzheimer's disease mouse model. The excellent visual monitoring performance of DCO-POT in vivo makes it a promising tool for exploring the pathophysiological effects of ONOO-.


Asunto(s)
Enfermedad de Alzheimer , Ferroptosis , Ratones , Animales , Colorantes Fluorescentes/toxicidad , Ácido Peroxinitroso , Pez Cebra , Enfermedad de Alzheimer/diagnóstico por imagen , Mitocondrias , Inflamación , Imagen Óptica/métodos
5.
Talanta ; 258: 124402, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36898308

RESUMEN

Oxidative stress is closely related to the crop health status under stress conditions. H2O2 is an important signaling molecule in plants under stress. Therefore, monitoring H2O2 fluctuations is of great significance when risk-assessing oxidative stress. However, few fluorescent probes have been reported for the in situ tracking of H2O2 fluctuations in crops. Herein, we designed a "turn-on" NIR fluorescent probe (DRP-B) to detect and in situ-image H2O2 in living cells and crops. DRP-B exhibited good detection performance for H2O2 and could image endogenous H2O2 in living cells. More importantly, it could semi-quantitatively visualize H2O2 in cabbage roots under abiotic stress. Visualization of H2O2 in cabbage roots revealed H2O2 upregulation in response to adverse environments (metals, flood, and drought). This study provides a new method for risk-assessing oxidative stress in plants under abiotic stress and is expected to provide guidance for the development of new antioxidant defense strategies to enhance plant resistance and crop productivity.


Asunto(s)
Brassica , Colorantes Fluorescentes , Peróxido de Hidrógeno , Estrés Oxidativo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA