Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 321: 121303, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739533

RESUMEN

In this study, cellulose composite films (CCFs) were fabricated through controllable dissolution and regeneration process of cellulose with the addition of polyvinyl alcohol (PVA). The competition of hydrogen bond site between cellulose and PVA led to partial dissolution of cellulose and maintained morphology of micron fibers with width range from 14.55 to 16.16 µm, which served as in-situ visible light scatterers. With this unique micron structure, the obtained CCF exhibited high transparency up to 90.5 % at 550 nm and ultrahigh haze up to 96 %. Interestingly, CCF could be used as hazy and flexible substrate, such as scattering lamp covers for indoor light management, anti-glare screen protectors and anti-reflection layers of solar cell devices. Among them, the efficiency of the solar cell device could be improved by 10.38 % with the help of a low-cost, excellent-performance CCF.

2.
Carbohydr Polym ; 302: 120313, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36604095

RESUMEN

In this study, tunicate cellulose nanocrystals (TCNCs) were introduced into castor oil-based waterborne polyurethane (WPU) to prepare bio-based nanocomposites through a simple solution blending method. The effect of TCNCs content on the particle size and stability of the composite dispersions, as well as the thermophysical and mechanical properties of the composite films were studied and discussed. The unique structure and properties of TCNCs, such as high crystallinity, large aspect ratio and high modulus, not only greatly improved the storage stability of WPU, but also showed significant reinforcing/toughening effects and excellent compatibility to WPU. By drip-coating silver nanowires (AgNWs) on the surface of the composite films, the flexible strain sensors were fabricated, which showed excellent sensitivity in monitoring human movement.


Asunto(s)
Nanocompuestos , Nanopartículas , Nanocables , Urocordados , Dispositivos Electrónicos Vestibles , Animales , Humanos , Celulosa/química , Poliuretanos/química , Aceite de Ricino/química , Plata , Nanopartículas/química , Nanocompuestos/química
3.
ACS Biomater Sci Eng ; 9(1): 508-519, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36502379

RESUMEN

On the basis of the original hydrogen bonding interaction and physical entanglement, covalent cross-linking and ionic cross-linking were additionally introduced to construct a carboxymethyl chitosan/allyl glycidyl ether conductive hydrogel (CCH) through a one pot method by a graft reaction, an addition reaction, and simple immersion, successively. The multiple cross-linking networks significantly increased the strength of CCHs and endowed them with ionic conductivity and an antifreezing property at -40 °C, which showed stable, durable, and reversible sensitivity to finger bending activity at subzero temperature. The CCHs could even be assembled into a triboelectric nanogenerator (TENG) to provide electric energy, which demonstrated stability against temperature variation, multiple drawing, long-term storage, or large quantities of contact-separation motion cycles. CCH-TENG can also be used as a tactile sensor within the pressure range from 0.4 kPa to higher than 8000 kPa. This work provided a simple route to fabricate antifreezing conductive hydrogels based on carboxymethyl chitosan and to find potential applications in soft sensor devices under a low temperature environment.


Asunto(s)
Quitosano , Hidrogeles , Temperatura , Electrónica
4.
ACS Biomater Sci Eng ; 8(8): 3633-3643, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35876253

RESUMEN

Through a simple strategy of immersion in a mixed solution of water/ethylene glycol (EG)/lithium chloride (LiCl), self-healing carboxymethyl chitosan (CA) hydrogels, that is, CA/N-vinylpyrrolidone-EG-Li+ hydrogels (CEH) with an ultra-low-temperature freezing resistance below -70 °C were fabricated. The introduction of electrolyte ions and small-molecule polyol also made these hydrogels highly conductive (0.8 S m-1) and imparted antidrying property to them, showing stable and reversible sensitivity to finger-wrist bending as well as 150 cycles of stretching. Such hydrogels also presented highly efficient self-healing ability, with a stress-strain healing efficiency of over 90%. Furthermore, the CEH-based sensors maintained a stable sensing performance over a wide range of temperatures below the freezing point (from -10 to -70 °C) and exhibited stable sensitivity to temperatures with fast response and no significant hysteresis. The present work is expected to provide a simple and sustainable route for the preparation of multifunctional antifreezing conductive hydrogels based on CA, leading to a wide range of potential applications in soft sensor devices.


Asunto(s)
Quitosano , Hidrogeles , Conductividad Eléctrica , Iones , Agua
5.
Plant Dis ; 105(12): 4106-4112, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34261357

RESUMEN

Bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae is a common, widespread, and highly devastating disease that affects rice yield. Breeding resistant cultivars is considered the most effective measure for controlling this disease. The introgression line G252 derived from Yuanjiang common wild rice (Oryza rufipogon) was highly resistant to all tested strains, including C5, C9, PXO99, PB, T7147Y8, Hzhj19, YM1, YM187, YJdp-2, and YJws-2. To identify the BB resistance gene(s) of G252, we developed an F2 population from the cross between G252 and 02428. A linkage analysis was performed for the phenotype and genotype of the population. A segregation ratio of 3:1 was observed between the resistant and susceptible individuals in the F2 progeny, indicating a dominant resistance gene, Xa47(t), in G252. The resistance gene was mapped within an approximately 26.24-kb physical region on chromosome 11 between two InDel markers, R13I14 and 13rbq-71. Moreover, one InDel marker, Hxjy-1, co-segregated with Xa47(t). Three genes were predicted within the target region, including a promising candidate gene encoding a nucleotide-binding domain and leucine-rich repeat (NLR) protein (LOC_Os11g46200) by combining the structure and expression analysis. Physical mapping data suggested that Xa47(t) is a new broad-spectrum BB resistance gene without identified allelic genes.


Asunto(s)
Resistencia a la Enfermedad , Oryza , Enfermedades de las Plantas , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Genes de Plantas , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Xanthomonas/patogenicidad
6.
Soft Matter ; 17(8): 2327-2339, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33480913

RESUMEN

Super-hydrophobic porous absorbents are convenient, low-cost, efficient and environment-friendly materials in the treatment of oil spills. In this work, a simple Pickering emulsion template method was employed to fabricate an interconnected porous poly(DVB-LMA) sponge. A new co-Pickering stabilization system of Span 80 and NiFe2O4 nanoparticles was used to prepare ultra-concentrated internal phase water-in-oil (W/O) emulsions. After further polymerization, the resulting sponges were generated, which exhibited excellent adsorption selectivity due to the super-hydrophobicity and super-lipophilicity. Furthermore, the characterization results indicated that the composites had superior thermal stability, low density, high porosity and a flexible three-dimensional porous structure. Besides, the addition of nickel ferrite nanoparticles provided the materials with extra magnetic operability. High oil adsorption capacity (up to 36.9-84.2 g g-1), high oil retention, fast adsorption rate and superior reusability allowed the materials to be applied in the treatment of oily water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA