Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Parasitol Res ; 123(9): 318, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249568

RESUMEN

Several miRNA-based studies on Theileria-transformed bovine cells have been conducted; however, the mechanism by which transformed cells exhibit uncontrolled proliferation is not yet fully understood. Therefore, it is necessary to screen more microRNAs that may play a role in the transformation process of host cells infected with Theileria annulata to better understand the transformation mechanisms of Theileria-infected cells. RNA sequencing was used to analyze miRNAs expression in the host bovine lymphocytes infected with T. annulata at different time points after buparvaquone (BW720) treatment and DMSO treatment (control groups). Differential miRNAs related to cell proliferation and apoptosis were identified through comparison with gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and a regulatory network of miRNA-mRNA was constructed. In total, 272 differentially expressed miRNAs were found at 36, 60 and 72 h. The miRNAs change of bta-miR-2285t, novel-miR-622, bta-miR-2478, and novel-miR-584 were significant. Analysis of 27 of these co-differential expressed miRNAs revealed that 15 miRNAs were down-regulated and 12 miRNAs were up-regulated. A further analysis of the changes in the expression of each of these 27 miRNAs in the three datasets suggested that bta-miR-2285t, bta-miR-345-5p, bta-miR-34a, bta-miR-150, and the novel-miR-1372 had significantly changed. Predicted target genes for these 27 miRNAs were analyzed by KEGG and the results demonstrated that EZR, RASSF, SOCS1 were mainly enriched in the signaling pathway microRNAs in cancer. MAPKAPK2, RELB, FLT3LG, and GADD45B were mainly enriched in the MAPK signaling pathway, and some genes were enriched in Axon guidance. This study has provided valuable information to further the understanding of the regulatory function of miRNAs in the host microenvironment and host-parasite interaction mechanisms.


Asunto(s)
Linfocitos , MicroARNs , Naftoquinonas , Theileria annulata , Animales , Theileria annulata/genética , MicroARNs/genética , MicroARNs/metabolismo , Bovinos , Naftoquinonas/farmacología , Linfocitos/metabolismo , Theileriosis/parasitología , Theileriosis/tratamiento farmacológico , Perfilación de la Expresión Génica , Redes Reguladoras de Genes
2.
ACS Appl Mater Interfaces ; 15(43): 50002-50014, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37851535

RESUMEN

Two-dimensional (2D) nanomaterials as drug carriers and photosensitizers have emerged as a promising antitumor strategy. However, our understanding of 2D antitumor nanomaterials is limited to intrinsic properties or additive modification of different materials. Subtractive structural engineering of 2D nanomaterials for better antitumor efficacy is largely overlooked. Here, subtractively engineered 2D MXenes with uniformly distributed nanopores are synthesized. The nanoporous defects endowed MXene with enhanced surface plasmon resonance effect for better optical absorbance performance and strong exciton-phonon coupling for higher photothermal conversion efficiency. In addition, porous structure improves the binding ability between drug and unsaturated bonds, thus promoting drug-loading capacity and reducing uncontrolled drug release. Furthermore, the porous structure provides adhesion sites for filopodia, thereby promoting the cellular internalization of the drug. Clinically, osteosarcoma is the most common bone malignancy routinely treated with doxorubicin-based chemotherapy. There have been no significant treatment advances in the past decade. As a proof-of-concept, nanoporous MXene loaded with doxorubicin is developed for treating human osteosarcoma cells. The porous MXene platform results in a higher amount of doxorubicin-loading, faster near-infrared (NIR)-controlled doxorubicin release, higher photothermal efficacy under NIR irradiation, and increased cell adhesion and internalization. This facile method pioneers a new paradigm for enhancing 2D material functions and is attractive for tumor treatment.


Asunto(s)
Neoplasias Óseas , Nanoporos , Osteosarcoma , Humanos , Nanomedicina , Doxorrubicina/farmacología , Doxorrubicina/química , Osteosarcoma/tratamiento farmacológico , Fototerapia , Línea Celular Tumoral
3.
Small ; 19(39): e2301917, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37264720

RESUMEN

Two-Dimensional (2D) materials have attracted immense attention in recent years. These materials have found their applications in various fields, such as catalysis, adsorption, energy storage, and sensing, as they exhibit excellent physical, chemical, electronic, photonic, and biological properties. Recently, researchers have focused on constructing porous structures on 2D materials. Various strategies, such as chemical etching and template-based methods, for the development of surface pores are reported, and the porous 2D materials fabricated over the years are used to develop supercapacitors and energy storage devices. Moreover, the lattice structure of the 2D materials can be modulated during the construction of porous structures to develop 2D materials that can be used in various fields such as lattice defects in 2D nanomaterials for enhancing biomedical performances. This review focuses on the recently developed chemical etching, solvent thermal synthesis, microwave combustion, and template methods that are used to fabricate porous 2D materials. The application prospects of the porous 2D materials are summarized. Finally, the key scientific challenges associated with developing porous 2D materials are presented to provide a platform for developing porous 2D materials.

4.
Front Microbiol ; 14: 1128433, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910209

RESUMEN

Theileria annulata-transformed cells share many phenotypes with cancer cells, including uncontrolled proliferation, immortalization, and dissemination. Telomeres are DNA-protein complex at the end of eukaryotic chromosomes that function to maintain genome stability and cell replicative capacity. Telomere length maintenance is primarily dependent on telomerase activity. In up to 90% of human cancer cells, telomerase is reactivated through expression of its catalytic subunit TERT. However, the effect of T. annulata infection on telomere and telomerase activity in bovine cells has not yet been described. In the present study, we confirmed that telomere length and telomerase activity are upregulated after T. annulata infection in three types of cell lines. This change depends on the presence of parasites. After eliminating Theileria from cells with antitheilerial drug buparvaquone, telomerase activity and the expression level of bTERT were decreased. In addition, inhibition of bHSP90 by novobiocin led to decreased AKT phosphorylation levels and telomerase activity, indicating that the bHSP90-AKT complex is a potent factor modulates telomerase activity in T. annulata-infected cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA