Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 22(1): 108, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714997

RESUMEN

BACKGROUND: Populations of the plant pathogenic fungus Verticillium dahliae display a complex and rich genetic diversity, yet the existence of sexual reproduction in the fungus remains contested. As pivotal genes, MAT genes play a crucial role in regulating cell differentiation, morphological development, and mating of compatible cells. However, the functions of the two mating type genes in V. dahliae, VdMAT1-1-1, and VdMAT1-2-1, remain poorly understood. RESULTS: In this study, we confirmed that the MAT loci in V. dahliae are highly conserved, including both VdMAT1-1-1 and VdMAT1-2-1 which share high collinearity. The conserved core transcription factor encoded by the two MAT loci may facilitate the regulation of pheromone precursor and pheromone receptor genes by directly binding to their promoter regions. Additionally, peptide activity assays demonstrated that the signal peptide of the pheromone VdPpg1 possessed secretory activity, while VdPpg2, lacked a predicted signal peptide. Chemotactic growth assays revealed that V. dahliae senses and grows towards the pheromones FO-a and FO-α of Fusarium oxysporum, as well as towards VdPpg2 of V. dahliae, but not in response to VdPpg1. The findings herein also revealed that VdMAT1-1-1 and VdMAT1-2-1 regulate vegetative growth, carbon source utilization, and resistance to stressors in V. dahliae, while negatively regulating virulence. CONCLUSIONS: These findings underscore the potential roles of VdMAT1-1-1 and VdMAT1-2-1 in sexual reproduction and confirm their involvement in various asexual processes of V. dahliae, offering novel insights into the functions of mating type genes in this species.


Asunto(s)
Genes del Tipo Sexual de los Hongos , Genes del Tipo Sexual de los Hongos/genética , Ascomicetos/genética , Ascomicetos/fisiología , Feromonas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Verticillium
2.
Chemosphere ; 352: 141374, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342144

RESUMEN

Despite the widespread occurrence of regolith-hosted rare earth elements (REEs) across South China, their spatial distribution characteristics in soils and their impact factors remain largely uncertain. This knowledge gap impedes the exploration of regolith-hosted REE deposits and the assessment of the environmental risks associated with REEs. To address this issue, 180 soil samples were collected from Meizhou City, Guangdong Province, a region known for its high abundance of regolith-hosted REEs. Subsequently, the correlations between REE enrichment/fractionation and various factors, i.e., topography, climate conditions, land use, and landform were analysed using the geo-detector method. The results revealed a highly uneven spatial distribution of REEs and their fractionation features with some regions displaying distinct spatial patterns. Elevation was the dominant factor influencing this distribution, and showed strong correlations with the concentrations of REEs, light REEs (LREEs) and heavy REEs (HREEs); the LREE/HREE ratio; and the positive Ce anomaly (δCe). The negative Eu anomaly (δEu) showed a good correlation with rock type. The enrichment and fractionation of REEs indicated a coupling among the abovementioned factors. For REE enrichment, areas with elevations of 138-148 m, precipitation levels of 1553-1574 mm, annual average land surface temperatures of 30.4-30.5 °C, leaf area index values of 22-29 and surface cutting degree of 21.5-29.9 m showed the highest average abundance within each type (scope) of the predominant factors. These findings highlight the key factors affecting REE distribution, thereby aiding the efficient utilization of regolith-hosted REE resources and the evaluation of their environmental risks.


Asunto(s)
Metales de Tierras Raras , Contaminantes del Suelo , Metales de Tierras Raras/análisis , Suelo , Contaminantes del Suelo/análisis , China , Hojas de la Planta/química
3.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34281204

RESUMEN

Verticillium dahliae is a soil-borne plant pathogenic fungus that causes Verticillium wilt on hundreds of dicotyledonous plant species. V. dahliae is considered an asexually (clonal) reproducing fungus, although both mating type idiomorphs (MAT1-1 and MAT1-2) are present, and is heterothallic. Most of the available information on V. dahliae strains, including their biology, pathology, and genomics comes from studies on isolates with the MAT1-2 idiomorph, and thus little information is available on the MAT1-1 V. dahliae strains in the literature. We therefore evaluated the growth responses of MAT1-1 and MAT1-2 V. dahliae strains to various stimuli. Growth rates and melanin production in response to increased temperature, alkaline pH, light, and H2O2 stress were higher in the MAT1-2 strains than in the MAT1-1 strains. In addition, the MAT1-2 strains showed an enhanced ability to degrade complex polysaccharides, especially starch, pectin, and cellulose. Furthermore, several MAT1-2 strains from both potato and sunflower showed increased virulence on their original hosts, relative to their MAT1-1 counterparts. Thus, compared to MAT1-1 strains, MAT1-2 strains derive their potentially greater fitness from an increased capacity to adapt to their environment and exhibit higher virulence. These competitive advantages might explain the current abundance of MAT1-2 strains relative to MAT1-1 strains in the agricultural and sylvicultural ecosystems, and this study provides the baseline information on the two mating idiomorphs to study sexual reproduction in V. dahliae under natural and laboratory conditions.


Asunto(s)
Ascomicetos/fisiología , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Genes del Tipo Sexual de los Hongos , Genómica , Enfermedades de las Plantas/microbiología , Reproducción Asexuada , Virulencia
4.
Phytopathology ; 111(9): 1686-1691, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33673752

RESUMEN

Though Verticillium dahliae is an asexually reproducing fungus, it is considered heterothallic owing to the presence of only one of the two mating-type idiomorphs (MAT1-1 or MAT1-2) in individual isolates. But sexual reproduction has never been observed either in nature or in the laboratory. All of the genomic information in the literature thus far has therefore come from studies on isolates carrying only the MAT1-2 idiomorph. Herein, we sequenced and compared high-quality reference genomes of MAT1-1 strain S011 and MAT1-2 strain S023 obtained from the same sunflower field. The two genomic sequences displayed high synteny, and encoded similar number genes, a similarity especially notable among pathogenicity-related genes. Homolog analysis between these two genomes revealed that 80% of encoded genes are highly conserved (95% identity and coverage), but only 20% of the single copy genes were identical. These novel genome resources will support the analysis of the structure and function of the two idiomorphs and provide valuable tools to elucidate the evolution and potential mechanisms of sexual reproduction in V. dahliae.


Asunto(s)
Genómica , Enfermedades de las Plantas , Ascomicetos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA