Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39297327

RESUMEN

Sonodynamic therapy (SDT) can generate reactive oxygen species (ROS) to combat multidrug-resistant biofilms, which pose significant challenges to human health. As the key to producing ROS in SDT, the design of sonosensitizers with optimal molecular structures for sufficient ROS generation and activity in complex biofilm matrix is essential. In this study, we propose a π-expansion strategy and synthesize a series of small-molecule metal Ru(II) complexes (Ru1-Ru4) as sonosensitizers (Ru1-Ru4) to enhance the efficacy of SDT. Among these complexes, Ru4 demonstrates remarkable ROS generation capability (∼65.5-fold) that surpasses most commercial sonosensitizers (1.3- to 6.7-fold). Through catalyzing endogenous H2O2 decomposition, Ru4 facilitates the production of abundant O2 as a resource for 1O2 and the generation of new ROS (i.e., •OH) for improving SDT. Furthermore, Ru4 maintains the sustained ROS activity via consuming the interferences (e.g., glutathione) that react with ROS. Due to these unique advantages, Ru4 exhibits potent biofilm eradication ability against methicillin-resistant Staphylococcus aureus (MRSA) both in vitro and in vivo, underscoring its potential use in clinical settings. This work introduces a new approach for designing effective sonosensitizers to eliminate biofilm infections, addressing a critical need in healthcare management.

2.
Pest Manag Sci ; 80(2): 414-425, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37708309

RESUMEN

BACKGROUND: Crop diseases caused by plant pathogenic fungi and bacteria have led to substantial losses in global food production. Chemical pesticides have been widely used as a primary means to mitigate these issues. Nevertheless, the persistent and excessive use of pesticides has resulted in the emergence of microbial resistance. Moreover, the improper application and excessive utilization of pesticides can contribute to environmental pollution and the persistence of pesticide residues. Consequently, the development of novel and highly effective bactericides and fungicides to combat plant pathogens holds immense practical importance. RESULTS: A series of uracil hydrazones IV-B was deliberately designed and evaluated for their antimicrobial efficacy. The results of bioassays indicated that most IV-B exhibited >80% inhibition against the fungal species Monilia fructigena and Sclerotium rolfsii, as well as the bacterial species Clavibacter michiganensis subsp. michiganensis, Xanthomonas oryzae pv. oryzae, and Ralstonia solanacearum, at 50 µg/mL in vitro. In vivo, IV-B20 showed 89.9% of curative and 71.8% of protective activities against C. michiganensis subsp. michiganensis at 100 µg/mL superior to thiodiazole copper and copper hydroxide. IV-B20 also showed excellent protective activity against M. fructigena (96.3% at 200 µg/mL) and S. rolfsii (80.4% at 1000 µg/mL), which were greater than chlorothalonil and equivalent to thifluzamide. Mechanistic studies revealed that IV-B20 induced oxidative damage in pathogenic bacteria and promoted the leakage of cellular contents. CONCLUSION: This study suggests that IV-B20 with uracil hydrazone skeleton has great potential as an antimicrobial candidate. These findings lay a foundation for practical application in agriculture. © 2023 Society of Chemical Industry.


Asunto(s)
Plaguicidas , Xanthomonas , Uracilo/farmacología , Antibacterianos/farmacología , Plaguicidas/farmacología , Enfermedades de las Plantas , Pruebas de Sensibilidad Microbiana , Clavibacter
3.
Pestic Biochem Physiol ; 184: 105098, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35715037

RESUMEN

Control of cyanobacteria harmful algal blooms remains a global challenge. In the present study, a series of novel 2-cyclopropyl-4-aminopyrimidine hydrazones were designed and synthesized as potential algicides. Compounds 4a, 4b, 4h, 4j, 4k, 4l, and 4m showed potent inhibition against Synechocystis sp. PCC6803 (median effective concentration, EC50 = 1.1 to 1.7 µM) and Microcystis aeruginosa FACHB905 (EC50 = 1.2 to 2.0 µM), more potent than, or comparably with, copper sulfate (PCC6803, EC50 = 1.8 µM; FACHB905, EC50 = 2.2 µM) and prometryne (PCC6803, EC50 = 12.3 µM; FACHB905, EC50 = 7.2 µM). Compound 4k exhibited algicidal activity in an expanded culture system, and was less toxic than copper sulfate to zebrafish. Electron microscope analyses showed that 4k damaged cyanobacterial cells and decreased the number of thylakoid lamellae. Transcriptomic and qPCR analyses suggest that 4k interfered photosynthesis-related pathways. Treatment with 4k significantly decreased the maximum quantum yield of photosystem II and the photosynthetic electron transfer rate, and the resulting reactive oxygen species damaged thylakoid membranes and photosystem I. The results suggest that 4k is a potential lead for further development of effective and safe algicides.


Asunto(s)
Herbicidas , Hidrazonas , Animales , Sulfato de Cobre , Herbicidas/farmacología , Hidrazonas/farmacología , Pirimidinas , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA