Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.927
Filtrar
1.
J Ethnopharmacol ; 336: 118759, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39209003

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hypercholesterolemia (HLC) was a key risk factor for cardiovascular disease (CVD) characterized by elevated cholesterol levels, particularly LDL. While traditional Chinese medicine preparations Compound Danshen Pills(CDP) has been clinically used for hypercholesterolemia and coronary heart disease, its specific therapeutic effect on HLC remains understudied, necessitating further investigation into its mechanisms. AIM OF THE STUDY: The aim of this study was to explore the potential of CDP in treating HLC and elucidate its underlying mechanisms and active components. MATERIALS AND METHODS: A hypercholesterolemic lipemia rat model induced by a high-fat diet was employed. Network pharmacology combined with UHPLC-Q exactive orbitrap HRMS technique was used to predict the active components, targets and mechanisms of CDP for HLC. Histological analysis and serum biochemical assays were used to assess the therapeutic effect of CDP and its main active ingredient Sa B on hypercholesterolemic lipemia rat model. Immunofluorescence assays and western blotting were used to verify the mechanism of CDP and Sa B in the treatment of HLC. Metabolomics approach was used to demonstrate that CDP and Sa B affected the metabolic profile of HLC. RESULTS: Our findings demonstrated that both CDP and its main active ingredient Sa B significantly ameliorated hypercholesterolemic lipemic lesions, reducing levels of TC, LDL, AST, ALT, and ALP. Histological analysis revealed a decrease in lipid droplet accumulation and collagen fiber deposition in the liver, as well as reduced collagen fiber deposition in the aorta. Network pharmacology predicted potential targets such as PPARα and CYP27A1. Immunofluorescence assays and western blotting confirmed that CDP and Sa B upregulated the expression of Adipor1, PPARα and CYP27A1. Metabolomics analyses further indicated improvements in ABC transporters metabolic pathways, with differential metabolites such as riboflavin, taurine, and choline showed regression in levels after CDP treatment and riboflavin, L-Threonine, Thiamine, L-Leucine, and Adenosine showed improved expression after Sa B treatment. CONCLUSION: CDP and Sa B have been shown to alleviate high-fat diet-induced hypercholesterolemia by activating the PPAR pathway and improving hepatic lipid metabolism. Our study demonstrated, for the first time, the complex mechanism of CDP, Sa B in the treatment of hypercholesterolemia at the protein and metabolic levels and provided a new reference that could elucidate the pharmacological effects of traditional Chinese medicine on hypercholesterolemia from multiple perspectives.


Asunto(s)
Dieta Alta en Grasa , Medicamentos Herbarios Chinos , Hipercolesterolemia , Metabolómica , Farmacología en Red , Ratas Sprague-Dawley , Salvia miltiorrhiza , Animales , Hipercolesterolemia/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Cromatografía Líquida de Alta Presión , Salvia miltiorrhiza/química , Ratas , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Canfanos , Panax notoginseng
2.
IEEE Trans Comput Soc Syst ; 11(1): 247-266, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39239536

RESUMEN

Adaptive interpretable ensemble model based on three-dimensional Convolutional Neural Network (3DCNN) and Genetic Algorithm (GA), i.e., 3DCNN+EL+GA, was proposed to differentiate the subjects with Alzheimer's Disease (AD) or Mild Cognitive Impairment (MCI) and further identify the discriminative brain regions significantly contributing to the classifications in a data-driven way. Plus, the discriminative brain sub-regions at a voxel level were further located in these achieved brain regions, with a gradient-based attribution method designed for CNN. Besides disclosing the discriminative brain sub-regions, the testing results on the datasets from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Open Access Series of Imaging Studies (OASIS) indicated that 3DCNN+EL+GA outperformed other state-of-the-art deep learning algorithms and that the achieved discriminative brain regions (e.g., the rostral hippocampus, caudal hippocampus, and medial amygdala) were linked to emotion, memory, language, and other essential brain functions impaired early in the AD process. Future research is needed to examine the generalizability of the proposed method and ideas to discern discriminative brain regions for other brain disorders, such as severe depression, schizophrenia, autism, and cerebrovascular diseases, using neuroimaging.

3.
Shock ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39228020

RESUMEN

BACKGROUND: Mechanical ventilation (MV) is a clinically important measure for respiratory support in critically ill patients. Although moderate tidal volume MV does not cause lung injury, it can further exacerbate lung injury in pathological state such as sepsis. This pathological process is known as the 'two-hit' theory, whereby an initial lung injury (e.g., infection, trauma, or sepsis) triggers an inflammatory response that activates immune cells, presenting the lung tissue in a fragile state and rendering it more susceptible to subsequent injury. The second hit occurs when mechanical ventilation is applied to lung tissue in a fragile state, and it is noteworthy that this mechanical ventilation is harmless to healthy lung tissue, further aggravating pre-existing lung injury through unknown mechanisms. This interaction between initial injury and subsequent mechanical ventilation develops a malignant cycle significantly exacerbating lung injury and severely hampering patient prognosis. The two-hit theory is critical to understanding the complicated mechanisms of ventilator-associated lung injury and facilitates the subsequent development of targeted therapeutic strategies. METHODS AND RESULTS: CLP mice model was used to mimic clinical sepsis patients. After 12 hours the mice were mechanical ventilated for 2-6 hours. MV by itself didn't lead to HMGB1 release, but significantly strengthened HMGB1 in plasma and cytoplasm of lung tissue in septic mice. Plasma and lung tissue activation of cytokines and chemokines, MAPK signaling pathway, neutrophil recruitment, and ALI were progressively decreased in LysM HMGB1-/- (Hmgb1 deletion in myeloid cells) and iHMGB1-/- mice (inducible HMGB1-/- mouse strain where the Hmgb1 gene was globally deleted after tamoxifen treatment). Compared with C57BL/6 mice, although EC-HMGB1-/- (Hmgb1 deletion in endothelial cells) mice didn't have lower levels of inflammation, neutrophil recruitment and lung injury were reduced. Compared with LysM HMGB1-/- mice, EC-HMGB1-/- mice had higher levels of inflammation but significantly lower neutrophil recruitment and lung injury. Overall, iHMGB1-/- mice had the lowest levels of all the above indicators. The level of inflammation, neutrophil recruitment and the degree of lung injury were decreased in RAGE-/- mice, and even the above indices were further decreased in TLR4/RAGE-/- mice. Levels of inflammation and neutrophil recruitment were decreased in Caspase-11-/- and Caspase-1/11-/- mice, but no statistical difference between these two gene knockout mice. CONCLUSIONS: These data show for the first time that the Caspase-1/Caspase-11-HMGB1-TLR4/RAGE signaling pathway plays a key role in mice model of sepsis induced lung injury exacerbated by MV. Different species of HMGB1 knockout mice have different lung protective mechanisms in the 'two hits' model, and location is the key to function. Specifically, LysM HMGB1-/- mice due to the deletion of HMGB1 in myeloid cells resulted in a pulmonary protective mechanism that was associated with a downregulation of the inflammatory response. EC HMGB1-/- mice are deficient in HMGB1 owing to endothelial cells, resulting in a distinct pulmonary protective mechanism independent of the inflammatory response and more relevant to the improvement of alveolar-capillary permeability. iHMGB1-/- mice, which are systemically HMGB1-deficient, share both of these lung-protective mechanisms.

4.
J Adv Prosthodont ; 16(4): 212-220, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39221416

RESUMEN

PURPOSE: This cone-beam computed tomography (CBCT) study aimed to analyze the anatomical characteristics of alveolar bone at mandibular first molar (MFM) and their implications for immediate implant placement surgery. MATERIALS AND METHODS: 100 patients with 140 MFMs were reviewed retrospectively. We first performed a 3D reconstruction of the patient's CBCT data to determine a reference plane with ideal implant placement and orientation. The following parameters of MFM region were analyzed: mesial-distal socket size (MD-SS), buccal-lingual socket size (BL-SS), root furcation fornix to inferior alveolar nerve (IAN) distance (RF-I), interradicular bone thickness (IRB), mesial/distal root apex to the IAN distance (MRA-I/DRA-I), thickness of the buccal/lingual bone of the mesial root (MR-B/MR-L), thickness of the buccal/lingual bone of the distal root (DR-B/DR-L). RESULTS: The MD-SS of MFM was 8.74 ± 0.76 mm, and the BL-SS was 8.26 ± 0.72 mm. The MR-B, DR-B was 1.01 ± 0.40 mm and 1.14 ± 0.50 mm, and the difference was statistically significant (P = .001). The values of the MR-L, DR-L were 2.71 ± 0.78 mm and 3.09 ± 0.73 mm, and the difference was also statistically significant (P < .001). The mean distance of RF-I was 15.68 ± 2.13 mm, and the MRA-I was 7.06 ± 2.22 mm, which was greater than that of DRA-I (6.48 ± 2.30 mm, P < .001). The IRB at 2 mm, 4 mm apical from the furcation fornix, and at apex level was 2.81 ± 0.50 mm, 3.30 ± 0.62 mm, and 4.44 ± 1.02 mm, respectively. CONCLUSION: There is relatively sufficient bone mass in interradicular bone in height, but an adequate width is lacking for the bone between the mesial and distal root after the extraction of the MFM for immediate implantation. The thickness of the MFM buccal bone is relative thin, especially for the mesial root.

5.
Cell Death Discov ; 10(1): 406, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39284807

RESUMEN

Enhancers constitute a vital category of cis-regulatory elements with a Mediator complex within DNA sequences, orchestrating gene expression by activating promoters. In the development of T cells, some enhancers regulate the critical genes, which might also regulate T cell malignant lesions. This review is to comprehensively elucidate the contributions of enhancers in both normal T cell development and its malignant pathogenesis, proposing the idea that the precise subunits of the Mediator complex are the potential drug target for disrupting the specific gene enhancer for T cell malignant diseases.

6.
Environ Sci Technol ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279665

RESUMEN

Conventional approaches for in situ remediation of mercury (Hg)-contaminated soils and sediments rely mostly on precipitation or adsorption. However, this can generate Hg-rich surfaces that facilitate microbial production of methylmercury (MeHg), a potent, bioaccumulative neurotoxin. Herein, we prove the concept that the risk of mercury methylation can be effectively minimized by adding sulfur-intercalated layered double hydroxide (S-LDH) to Hg-contaminated soils. Hg bound to S-LDH has minimal methylation potential when incubated with model methylating bacteria Pseudodesulfovibrio mercurii ND132 and Geobacter sulfurreducens PCA. With a combination of spectroscopic and microscopic evidence, as well as theoretical calculations, we confirm that dissolved Hg(II) tends to enter the interlayers of S-LDH to bind to the sulfur groups intercalated within, leading to the formation of nanoscale metacinnabar (ß-HgS). This not only physically blocks the contact of methylating microorganisms but also inhibits secondary release of bound mercury in the presence of strong binding ligands in porewater. This study highlights the promising concept of in situ risk reduction of heavy metal contamination by inducing precipitation within (nano)confined domains, achieving a sustainable outcome of enhanced removal and reduced bioaccessibility for pollutants that may otherwise be bioavailable in the form of nanoprecipitates.

7.
Transl Androl Urol ; 13(8): 1517-1536, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39280654

RESUMEN

Background: In recent decades, there has been increasing evidence that Go-Ichi-Nii-San (GINS) subunits play an important role in the development and progression of various tumors. However, little research has been conducted on the role of GINS subunits in clear cell renal cell carcinoma (ccRCC). This study sought to explore the differential expression, prognosis, and immunological significance of GINS subunits in ccRCC. Methods: We used various analysis packages of R (version 3.6.3), the University of ALabama at Birmingham CANcer (UALCAN) data analysis portal, the Cancer Cell Line Encyclopedia (CCLE), the cBio Cancer Genomics Portal (cBioPortal), and the Tumor Immune Estimation Resource (TIMER) to study the gene expression, promoter methylation level, gene mutations, prognostic and diagnostic value, immune infiltration, pathway enrichment, and other aspects of the GINS subunits. Next, the genes related to the GINS subunits were analyzed using the STRING and GeneMANIA platforms, and the correlation between GINS subunits and the functions involved were investigated. Results: The expression level of GINS1/2/3/4 was significantly higher in ccRCC tumor tissues than normal tissues, and was significantly related to tumor grade and stage. The expression of GINS1/2/4 may be related to the methylation degree of the promoter region. The prognostic and diagnostic analyses showed that the increased expression of GINS1 was associated with various poor prognoses and had diagnostic value. The GINS subunit mutation also significantly affected the clinical prognosis of ccRCC patients. Finally, the correlation analysis of the immune infiltration level, co-expression, and enrichment of related genes indicated that GINS subunit expression was associated with different levels of ccRCC immune infiltration. Conclusions: The analysis results showed that the differential expression of GINS subunits in ccRCC, which had prognostic and diagnostic value, was correlated with clinicopathological stage, immune infiltration, and other related aspects. GINS1 may serve as a new potential prognostic biomarker for ccRCC patients and be used to guide treatment.

8.
Biophys Rep ; 10(4): 201-212, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39281198

RESUMEN

Sedimentation solid-state NMR is a novel method for sample preparation in solid-state NMR (ssNMR) studies. It involves the sedimentation of soluble macromolecules such as large protein complexes. By utilizing ultra-high centrifugal forces, the molecules in solution are driven into a high-concentrated hydrogel, resulting in a sample suitable for solid-state NMR. This technique has the advantage of avoiding the need for chemical treatment, thus minimizing the loss of sample biological activity. Sediment ssNMR has been successfully applied to a variety of non-crystalline protein solids, significantly expanding the scope of solid-state NMR research. In theory, using this method, any biological macromolecule in solution can be transferred into a sedimented solute appropriate for solid-state NMR analysis. However, specialized equipment and careful handling are essential for effectively collecting and loading the sedimented solids to solid-state NMR rotors. To improve efficiency, we have designed a series of loading tools to achieve the loading process from the solution to the rotor in one step. In this paper, we illustrate the sample preparation process of sediment NMR using the H1.4-NCP167 complex, which consists of linker histone H1.4 and nucleosome core particle, as an example.

9.
Environ Sci Technol ; 58(37): 16547-16559, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39229966

RESUMEN

It has been debated whether wastewater treatment plants (WWTPs) primarily act to attenuate or amplify antibiotic resistance genes (ARGs). However, ARGs are highly diverse with respect to their resistance mechanisms, mobilities, and taxonomic hosts and therefore their behavior in WWTPs should not be expected to be universally conserved. We applied metagenomic sequencing to wastewater influent and effluent samples from 12 international WWTPs to classify the behavior of specific ARGs entering and exiting WWTPs. In total, 1079 different ARGs originating from a variety of bacteria were detected. This included ARGs that could be mapped to assembled scaffolds corresponding to nine human pathogens. While the relative abundance (per 16S rRNA gene) of ARGs decreased during treatment at 11 of the 12 WWTPs sampled and absolute abundance (per mL) decreased at all 12 WWTPs, increases in relative abundance were observed for 40% of the ARGs detected at the 12th WWTP. Also, the relative abundance of mobile genetic elements (MGE) increased during treatment, but the fraction of ARGs known to be transmissible between species decreased, thus demonstrating that increased MGE prevalence may not be generally indicative of an increase in ARGs. A distinct conserved resistome was documented in both influent and effluent across samples, suggesting that well-functioning WWTPs generally attenuate influent antibiotic resistance loads. This work helps inform strategies for wastewater surveillance of antibiotic resistance, highlighting the utility of tracking ARGs as indicators of treatment performance and relative risk reduction.


Asunto(s)
Farmacorresistencia Microbiana , Metagenómica , Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/microbiología , Farmacorresistencia Microbiana/genética , Aguas Residuales/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/efectos de los fármacos
10.
Langmuir ; 40(37): 19412-19422, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39235244

RESUMEN

In current research on the synthesis of colloidal nanostructures, the size and morphology of nanoparticles still exhibit certain dispersion and variation from batch to batch. Characterization of size distribution and morphology distribution of nanoparticles often requires techniques such as scanning electron microscopy or transmission electron microscopy, which involve high vacuum environments, are time-consuming, and costly. Experienced researchers can roughly estimate the size and distribution of nanostructure from spectra for a given synthetic route, but the accuracy is often limited. This paper reports the potential of using neural networks to accurately predict the composition of colloidal nanostructures from spectra. We address several fundamental issues in neural network prediction of colloidal composition. We first demonstrate the prediction of the composition of a colloidal binary mixture of gold nanoparticles using a gated recurrent neural network (GRU). The evolution of prediction errors for scattering, absorption, and extinction spectra of nanostructures with sizes ranging from 5 to 120 nm are analyzed. Furthermore, we demonstrate that the neural network model operates robustly under white noise in experimental testing scenarios. Compared to fully connected neural networks, the gated recurrent unit exhibits better testing accuracy in spectral prediction. When confronted with experimental data that deviates from simulation outputs, minor adjustments to the training set can allow the predictions to align closely with the experimental spectra, paving the way for the characterization of complex colloidal compositions with artificial intelligence.

11.
Ann Med ; 56(1): 2402071, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39262391

RESUMEN

BACKGROUND: This study aimed to evaluate the efficiency of noninvasive prenatal screening (NIPS) technology in screening for microdeletions in the 7q11.23 region. METHODS: 19,607 pregnant women underwent NIPS in our hospital. Maternal peripheral cell-free foetal DNA (cffDNA) was routinely screened for aneuploidy by cffDNA enrichment and simultaneously analyzed for pathogenic copy number variants (CNVs). The Williams syndrome (WS) 7q11.23 region was targeted in this study. Chromosomal microarray analysis (CMA) was used to verify the screen-positive samples. RESULTS: The mean concentration of cffDNA before and after enrichment increased from 9.44% to 19.32%, with a statistically significant difference. Two out of 19,607 samples tested for CNVs were found to have a heterozygous deletion at the 7q11.23 region, indicating a high risk for WS. CMA results confirmed the 1.5 megabase (Mb) deletions at the 7q11.23 region in amniotic fluid samples. One of the two WS foetuses had a small left ventricle by ultrasound screening, and the other did not have a significant cardiovascular abnormality phenotype. CONCLUSIONS: NIPS screening for Williams syndrome can be achieved by enriching cell-free foetal DNA and improving bioinformatic analysis algorithms.


Asunto(s)
Ácidos Nucleicos Libres de Células , Variaciones en el Número de Copia de ADN , Pruebas Prenatales no Invasivas , Síndrome de Williams , Humanos , Síndrome de Williams/genética , Síndrome de Williams/diagnóstico , Femenino , Embarazo , Pruebas Prenatales no Invasivas/métodos , Pruebas Prenatales no Invasivas/estadística & datos numéricos , Adulto , Ácidos Nucleicos Libres de Células/análisis , Ácidos Nucleicos Libres de Células/genética , Cromosomas Humanos Par 7/genética , Diagnóstico Prenatal/métodos , Deleción Cromosómica
12.
Ann Med ; 56(1): 2396567, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39253851

RESUMEN

OBJECTIVE: To develop a comprehensive framework for selecting outcomes in evaluating the clinical efficacy of Chinese herbal injections and to scientifically select outcomes for the clinical randomized controlled trial (RCT) of Tan-Re-Qing injection intervening AECOPD. METHODS: A comprehensive literature review and consensus methods, including focus groups and Delphi surveys, were utilized. RESULTS: Literature analysis identified 513 publications, encompassing regulatory guidance, guidelines, expert consensus, and RCTs. Initial dimensions include clinical efficacy, safety, and health economics. Primary outcomes should align with study objectives. Recommended evaluation domains include death, treatment outcome, future impact, quality of life, and safety. Commonly recommended outcomes comprise mortality, arterial blood gases, CAT, exacerbation frequency, adverse events, and lung function. Network meta-analysis identified specific therapeutic efficacy markers (white blood cell count, IL-6, IL-8). Quality of life assessment recommended SF-12, EQ-5D, or CAT. Emphasis on AECOPD frequency and lung function was noted. Delphi survey yielded 41 outcomes across various domains for evaluating Tan-Re-Qing in AECOPD. CONCLUSION: The findings contribute to developing a robust and reliable trial design for Tan-Re-Qing injection in AECOPD. The methodology employed in this study ensures a systematic and comprehensive approach to the selection of outcomes for the clinical evaluation of future studies in this field.


Asunto(s)
Técnica Delphi , Medicamentos Herbarios Chinos , Enfermedad Pulmonar Obstructiva Crónica , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/efectos adversos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Resultado del Tratamiento , Inyecciones
13.
Sci Rep ; 14(1): 21165, 2024 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256449

RESUMEN

Diabetes mellitus (DM) is a well-documented risk factor of intervertebral disc degeneration (IVDD). The current study was aimed to clarify the effects and mechanisms of NADH: ubiquinone oxidoreductase subunit A3 (NDUFA3) in human nucleus pulposus cells (HNPCs) exposed to high glucose. NDUFA3 was overexpressed in HNPCs via lenti-virus transduction, which were co-treated with high glucose and rotenone (a mitochondrial complex I inhibitor) for 48 h. Cell activities were assessed for cell viability, cell apoptosis, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) ratio, oxygen consumption rate (OCR) and mitochondrial complexes I activities. High glucose decreased cell viability, increased apoptotic cells, increased ROS production, decreased MMP levels and OCR values in HNPCs in a dose-dependent manner. Rotenone co-treatment augmented the high glucose-induced injuries on cell viability, apoptosis, ROS production and mitochondrial function. NDUFA3 overexpression counteracted the high glucose-induced injuries in HNPCs. HDAC/H3K27ac mechanism was involved in regulating NDUFA3 transcription. NDUFA3 knockdown decreased cell viability and increased apoptotic cells, which were reversed by ROS scavenger N-acetylcysteine. HDAC/H3K27ac-mediated transcription of NDUFA3 protects HNPCs against high glucose-induced injuries through suppressing cell apoptosis, eliminating ROS, improving mitochondrial function and oxidative phosphorylation. This study sheds light on candidate therapeutic targets and deepens the understanding of molecular mechanisms behind DM-induced IVDD.


Asunto(s)
Apoptosis , Supervivencia Celular , Complejo I de Transporte de Electrón , Glucosa , Histonas , Mitocondrias , Núcleo Pulposo , Especies Reactivas de Oxígeno , Humanos , Glucosa/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Histonas/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Rotenona/farmacología , Transcripción Genética/efectos de los fármacos , Células Cultivadas
14.
Phytomedicine ; 134: 156017, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39265443

RESUMEN

BACKGROUND: Currently, there is a lack of validated pharmacological interventions for non-alcoholic fatty liver disease (NAFLD), which is characterized by the accumulation of hepatic triglyceride. Zhimu-Huangbai (ZH) herb-pair is a traditional Chinese medicine that regulates glucose and lipid metabolism disorders. However, the precise mechanisms underlying the preventive effects of hepatic triglyceride induced by high-fat diet (HFD) remain elusive. PURPOSE: The study aimed to examine the impact of ZH herb-pair on NAFLD in mice and explore the underlying mechanisms, particularly its effects on endoplasmic reticulum (ER) stress and lipid metabolism. METHODS: NAFLD was induced in mice using HFD, and the treated mice were orally administered ZH, metformin (Glucophage) or lovastatin. The lipid metabolism factors, ER stress markers, and the unfolded protein response (UPR) branch factors were measured using immunohistochemistry, western blotting or qRT-PCR. Co-Immunoprecipitation (CoIP) was performed to reveal the connection between SCAP and SREBP-1c. Tunicamycin (TM) and plasmid delivery were used to induce acute ER stress or crease XBP1 gain function models. The main compounds in ZH binding to IRE1α protein were studied by molecular docking and cellular thermal shift assay (CETSA). RESULTS: Treatment with ZH significantly ameliorated hepatic steatosis and reduced lipid synthesis process mainly inhibiting the expression of mature active form of SREBP-1c through relieving ER stress. The expression of IRE1α and XBP1s was inhibited after treatment with ZH. In addition, ZH improved the fatty liver phenotype caused by XBP1 overexpression via decreasing srebp1c transcription. In vitro experimental results suggested that the main compounds in ZH decreased cellular TG contents. Mechanistically, ZH targeted IRE1α and inhibited XBP1s mRNA expression to relieve ER stress and inhibit SREBP-1c production. CONCLUSIONS: ZH herb-pair can protect against NAFLD by reducing the expression of SREBP-1c, in part, via regulating IRE1α/XBP1s pathway.

15.
J Am Chem Soc ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39262219

RESUMEN

Li-O2 batteries provide a novel technology for electric energy storage due to their high energy density. However, the strong solvent coordination with Li+ at low temperatures impacts their performance and triggers irreversible interfacial reactions on the Li anode. Herein, cyclopentyl methyl ether (CME) is incorporated in a dimethoxyethane (DME)-based electrolyte to realize an anionic solvation transition at low temperatures in Li-O2 batteries. CME featuring a single O coordination site substitutes highly solvating DME in the first solvation sheath, and it induces more anion coordination to Li+ across the room- and low-temperature ranges. The low residence time of CME (66 ps at 25 °C, 382 ps at -40 °C.) in the solvation structures leads to the fast exchange of coordinated CME molecules with Li+ in comparison with DME and facilitates Li+ desolvation at low temperatures. The simultaneously generated inorganic-rich solid electrolyte interphase promotes Li+ transport to improve Li deposition and suppress Li dendrite formation. These enable the Li-O2 battery to present a good cycling stability of 110 cycles with a fixed capacity of 1000 mA h g-1 at -40 °C. This work paves the way for designing novel electrolytes in low-temperature batteries.

16.
Biochim Biophys Acta Mol Basis Dis ; 1871(1): 167497, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39237047

RESUMEN

Chemotherapeutic resistance is a major obstacle to the effectiveness of cisplatin-based chemotherapy for gastric cancer (GC), leading to treatment failure and poor survival rates. However, the underlying mechanisms are not fully understood. Our study demonstrated that the transcription factor myocyte enhancer factor 2A (MEF2A) plays a role in chemotherapeutic drug resistance by regulating the transcription of PGC1α and KEAP1, promoting mitochondrial biogenesis. It was found that increased MEF2A expression is linked with poor prognosis, cisplatin insensitivity, and mitochondrial function in GC. MEF2A overexpression significantly decreases GC cell sensitivity in vitro and in vivo, while MEF2A knockdown enhances the sensitivity to cisplatin. Mechanistically, MEF2A activates the transcription of PGC1α, leading to increased mitochondrial biogenesis. In addition, MEF2A inhibits KEAP1 transcription, reduces NRF2 ubiquitination degradation, and activates the KEAP1/NRF2 signaling pathway, which modulates the reactive oxygen species level. The present study identifies MEF2A as a new critical oncogene involved in GC chemoresistance, suggesting a novel therapeutic target for GC.

17.
J Hazard Mater ; 479: 135721, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39255667

RESUMEN

Reducing antibiotic levels in soil ecosystems is vital to curb the dissemination of antimicrobial resistance genes (ARGs) and mitigate global health threats. However, gaps persist in understanding how antibiotic resistome can be suppressed during antibiotic degradation. Herein, we investigate the efficacy of a biochar biofilm incorporating antibiotics-degrading bacterial strain (Arthrobacter sp. D2) to mitigate antibiotic resistome in non-manured and manure-amended soils with sulfadiazine (SDZ) and trimethoprim (TMP) contamination. Results show that biofilm enhanced SDZ degradation by 83.0% within three days and increased TMP attenuation by 55.4% over 60 days in non-manured soils. In the non-manured black soil, the relative abundance of ARGs increased initially after biofilm inoculation. However, by day 30, it decreased by 20.5% compared to the controls. Moreover, after 7 days, biofilm reduced TMP by 38.5% in manured soils and decreased the total ARG abundance by 19.0%. Thus, while SDZ degradation did not increase sulfonamide resistance genes, TMP dissipation led to a proliferation of insertion sequences and related TMP resistance genes. This study underscores the importance of antibiotic degradation in reducing related ARGs while cautioning against the potential proliferation and various ARGs transfer by resistant microorganisms.

18.
Reprod Health ; 21(1): 130, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237988

RESUMEN

OBJECTIVE: This work aimed to investigate the potential correlation between chromosomal polymorphisms and various reproductive abnormalities. METHODS: We examined 21,916 patients affected by infertility who sought care at the Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University between January 2018 and December 2022. A total of 2227 individuals identified as chromosomal polymorphism carriers constituted the polymorphism group, and 2245 individuals with normal chromosome karyotypes were randomly selected to form a control group. Clinical manifestations, histories of spontaneous miscarriage, abnormal reproductive developments, fetal abnormalities, and male sperm quality anomalies were statistically compared between these two groups. RESULTS: Of the 21,916 patients analyzed, 2227 displayed chromosomal polymorphism, representing a 10.16% detection rate. Amongst the male patients, 1622 out of 10,827 exhibited polymorphisms (14.98%), whereas 605 out of 11,089 females showed polymorphisms (5.46%). Female carriers in the polymorphism group, showed statistically significant increased rates of spontaneous abortion (29.75% vs. 18.54%), fetal anomalies (1.32% vs. 0.81%), and uterine abnormalities compared with the control group (1.32% vs. 0.81%). Male carriers in the polymorphism group had higher rates of spontaneous abortion in partners (22.87% vs. 10.37%), fetal anomalies (1.97% vs. 0.25%), compromised sperm quality (41.74% vs. 7.18%), testicular underdevelopment (2.28% vs. 0.92%), and hypogonadotropic hypogonadism (0.62% vs. 0.37%) compared with the control group. CONCLUSION: Chromosomal polymorphisms may have a certain negative effect on reproductive irregularities, including spontaneous abortions, fetal anomalies, and reduced sperm quality in males. Their clinical effects deserve further investigation.


Asunto(s)
Aberraciones Cromosómicas , Polimorfismo Genético , Humanos , Femenino , Masculino , Adulto , Infertilidad/genética , Aborto Espontáneo/genética , Embarazo
19.
ACS Sens ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248698

RESUMEN

This study introduces a novel deep learning framework for lung health evaluation using exhaled gas. The framework synergistically integrates pyramid pooling and a dual-encoder network, leveraging SHapley Additive exPlanations (SHAP) derived feature importance to enhance its predictive capability. The framework is specifically designed to effectively distinguish between smokers, individuals with chronic obstructive pulmonary disease (COPD), and control subjects. The pyramid pooling structure aggregates multilevel global information by pooling features at four scales. SHAP assesses feature importance from the eight sensors. Two encoder architectures handle different feature sets based on their importance, optimizing performance. Besides, the model's robustness is enhanced using the sliding window technique and white noise augmentation on the original data. In 5-fold cross-validation, the model achieved an average accuracy of 96.40%, surpassing that of a single encoder pyramid pooling model by 10.77%. Further optimization of filters in the transformer convolutional layer and pooling size in the pyramid module increased the accuracy to 98.46%. This study offers an efficient tool for identifying the effects of smoking and COPD, as well as a novel approach to utilizing deep learning technology to address complex biomedical issues.

20.
Front Immunol ; 15: 1412781, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253092

RESUMEN

Background: Autophagy plays important roles in cancer progression and therapeutic resistance, and the autophagy underlying the tumor pathogenesis and further mechanisms of chemoresistance emergence remains unknown. Methods: In this study, via the single-sample gene set enrichment analysis (ssGSEA) method, an autophagy 45-gene list was identified to evaluate samples' autophagy activity, verified through six GEO datasets with a confirmed autophagy phenotype. It was further utilized to distinguish tumors into autophagy score-high and score-low subtypes, and analyze their transcriptome landscapes, including survival analysis, correlation analysis of autophagy- and resistance-related genes, biological functional enrichment, and immune- and hypoxia-related and genomic heterogeneity comparison, in TCGA pan-cancer datasets. Furthermore, we performed an analysis of autophagy status in breast cancer chemoresistance combined with multiple GEO datasets and in vitro experiments to validate the mechanisms of potential anticancer drugs for reversing chemoresistance, including CCK-8 cell viability assays, RT-qPCR, and immunofluorescence. Results: The 45-gene list was used to identify autophagy score-high and score-low subtypes and further analyze their multi-dimensional features. We demonstrated that cancer autophagy status correlated with significantly different prognoses, molecular alterations, biological process activations, immunocyte infiltrations, hypoxia statuses, and specific mutational processes. The autophagy score-low subtype displayed a more favorable prognosis compared with the score-high subtype, associated with their immune-activated features, manifested as high immunocyte infiltration, including high CD8+T, Tfh, Treg, NK cells, and tumor-associated macrophages M1/M2. The autophagy score-low subtype also showed a high hypoxia score, and hypoxic tumors showed a significantly differential prognosis in different autophagy statuses. Therefore, "double-edged" cell fates triggered by autophagy might be closely correlated with the immune microenvironment and hypoxia induction. Results demonstrated that dysregulated autophagy was involved in many cancers and their therapeutic resistance and that the autophagy was induced by the resistance-reversing drug response, in five breast cancer GEO datasets and validated by in vitro experiments. In vitro, dihydroartemisinin and artesunate could reverse breast cancer doxorubicin resistance, through inducing autophagy via upregulating LC3B and ATG7. Conclusion: Our study provided a comprehensive landscape of the autophagy-related molecular and tumor microenvironment patterns for cancer progression and resistance, and highlighted the promising potential of drug-induced autophagy in the activation of drug sensitivity and reversal of resistance.


Asunto(s)
Autofagia , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Humanos , Autofagia/genética , Autofagia/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Línea Celular Tumoral , Microambiente Tumoral/inmunología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Perfilación de la Expresión Génica , Transcriptoma , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/inmunología , Pronóstico , Biomarcadores de Tumor/genética , Bases de Datos Genéticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA