Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Divers ; 46(4): 519-529, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39280976

RESUMEN

In response to insect attack, plants use intricate signaling pathways, including phytohormones, such as jasmonate (JA), ethylene (ET), and salicylic acid (SA), to activate defenses. Maize (Zea mays) is one of the most important staple food crops around the world. Previous studies have shown that the JA and ET signaling play important roles in maize defense against insects, but little is known about whether and how SA regulates maize resistance to insect herbivores. In this study, we ectopically expressed the NahG (salicylate hydroxylase) gene in maize plants (NahG maize) to block the accumulation of SA. It was found that compared with the wild-type (WT) maize, the NahG maize exhibited decreased resistance to the generalist insects S podoptera litura and Spodoptera frugiperda and the specialist Mythimna separata, and the compromised resistance in the NahG maize was associated with decreased levels of defensive metabolites benzoxazinoids (Bxs) and chlorogenic acid (CA). Quantification of simulated S. litura feeding-induced JA, JA-isoleucine conjugate (JA-Ile), and ET in the WT and NahG maize indicated that SA does not regulate JA or JA-Ile, but positively controls ET. We provide evidence suggesting that the SA pathway does not crosstalk with the JA or the ET signaling in regulating the accumulation of Bxs and CA. Transcriptome analysis revealed that the bHLH, ERF, and WRKY transcription factors might be involved in SA-regulated defenses. This study uncovers a novel and important phytohormone pathway in maize defense against lepidopterous larvae.

2.
Bioresour Technol ; 412: 131414, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39226941

RESUMEN

Anaerobic electrochemical digestion (AED) is an effective system for recovering biogas from organic wastes. However, the effects of different anode potentials on anaerobic activated sludge remain unclear. This study confirmed that biofilms exhibited the best electroactivity at -0.2 V (vs. Ag/AgCl) compared to -0.4 V and 0 V. Gas was further regulated, with the highest hydrogen content (47 ± 7 %) observed at -0.2 V. The 0 V system produced the largest amount of methane (70 ± 8 %) and exhibited the greatest presence of hydrogen-utilizing microorganisms. The gas yield at -0.4 V was the lowest, with no hydrogen detected. Excess bioelectrohydrogen at -0.2 V and 0 V caused the co-enrichment of Methanobacterium and Acetoanaerobium, establishing a thermodynamically feasible current-acetate-hydrogen electron cycle to improve electrogenesis. These results provide insights into the regulatory strategies of MEC technology during anaerobic digestion, which play a decisive role in determining the composition of biogas.


Asunto(s)
Electrodos , Hidrógeno , Metano , Microbiota , Anaerobiosis , Hidrógeno/metabolismo , Metano/metabolismo , Microbiota/fisiología , Gases , Aguas del Alcantarillado/microbiología , Biocombustibles , Técnicas Electroquímicas/métodos , Biopelículas
3.
Nat Commun ; 15(1): 7928, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256403

RESUMEN

Multiple synchronous lung cancers (MSLCs) constitute a unique subtype of lung cancer. To explore the genomic and immune heterogeneity across different pathological stages of MSLCs, we analyse 16 MSLCs from 8 patients using single-cell RNA-seq, single-cell TCR sequencing, and bulk whole-exome sequencing. Our investigation indicates clonally independent tumours with convergent evolution driven by shared driver mutations. However, tumours from the same individual exhibit few shared mutations, indicating independent origins. During the transition from pre-invasive to invasive adenocarcinoma, we observe a shift in T cell phenotypes characterized by increased Treg cells and exhausted CD8+ T cells, accompanied by diminished cytotoxicity. Additionally, invasive adenocarcinomas exhibit greater neoantigen abundance and a more diverse TCR repertoire, indicating heightened heterogeneity. In summary, despite having a common genetic background and environmental exposure, our study emphasizes the individuality of MSLCs at different stages, highlighting their unique genomic and immune characteristics.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Mutación , Análisis de la Célula Individual , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Secuenciación del Exoma , Femenino , Genómica , Masculino , Linfocitos T CD8-positivos/inmunología , Persona de Mediana Edad , Heterogeneidad Genética , Anciano , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Neoplasias Primarias Múltiples/genética , Neoplasias Primarias Múltiples/inmunología , Neoplasias Primarias Múltiples/patología
4.
BMC Pediatr ; 24(1): 556, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215256

RESUMEN

PURPOSE: The treatment with anti-VEGF for Retinopathy of prematurity (ROP) has already been widely applied in clinics even though there are still many concerns about this treatment. In this project we investigated the clinical outcomes of intra-vitreous conbercept (IVC) and ranibizumab (IVR) injection for treating type 1 prethreshold ROP in Zone II. METHODS: The data of ROP infants receiving IVR or IVC from January 2017 to March 2020 who were followed up for at least 12 months in our hospital was studied in the present retrospective study. Regression, reactivation, complications, and ocular biological parameters were evaluated. RESULTS: One hundred twenty-five eyes (64 infants) in IVC group and 229 eyes (117 infants) in IVR group were observed in the study. All infants showed good response to the two anti-VEGF agents. No eyes deteriorated during the observation. No significant difference was found between the two groups as to the regression within one week and one month, the reactivation rate, and the retreatment interval (p > 0.05) whereas retinal complete vascularization rate at 6 mons after the initial treatment and mean completion time of retinal vascularization after initial injection showed significant difference (p < 0.05). At 12 mons PMA the ocular parameters also presented no statistical difference between the two treated groups (p > 0.05). However, the ocular showed slight myopic tendency with the anti-VEGF treatment when compared to the control group (p < 0.05) whereas there was no statistical difference revealed between the two treated groups (p > 0.05). CONCLUSIONS: Both conbercept and ranibizumab for treating type 1 prethreshold ROP in Zone II are safe and effective. They had little effect on the development of ocular whereas there was a slight tendency of myopia after the treatment.


Asunto(s)
Inhibidores de la Angiogénesis , Inyecciones Intravítreas , Ranibizumab , Proteínas Recombinantes de Fusión , Retinopatía de la Prematuridad , Humanos , Ranibizumab/uso terapéutico , Ranibizumab/administración & dosificación , Retinopatía de la Prematuridad/tratamiento farmacológico , Estudios Retrospectivos , Inhibidores de la Angiogénesis/uso terapéutico , Inhibidores de la Angiogénesis/administración & dosificación , Masculino , Femenino , Recién Nacido , Proteínas Recombinantes de Fusión/uso terapéutico , Proteínas Recombinantes de Fusión/administración & dosificación , Resultado del Tratamiento , Estudios de Seguimiento
5.
J Integr Neurosci ; 23(6): 114, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38940083

RESUMEN

Deep brain stimulation (DBS) is a common therapy for managing Parkinson's disease (PD) in clinical practice. However, a complete understanding of its mode of action is still needed. DBS is believed to work primarily through electrical and neurochemical pathways. Furthermore, DBS has other mechanisms of action. This review explores the fundamental concepts and applications of DBS in treating PD, including its mechanisms, clinical implications, and recent research.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología , Humanos , Encéfalo/fisiopatología , Animales
6.
ACS Nano ; 18(18): 11828-11836, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38659192

RESUMEN

As essential primary producers, cyanobacteria play a major role in global carbon and nitrogen cycles. Though the influence of nanoplastics on the carbon metabolism of cyanobacteria is well-studied, little is known about how nanoplastics affect their nitrogen metabolism, especially under environmentally relevant nitrogen concentrations. Here, we show that nitrogen forms regulated growth inhibition, nitrogen consumption, and the synthesis and release of microcystin (MC) in Microcystis aeruginosa exposed to 10 µg/mL amino-modified polystyrene nanoplastics (PS-NH2) with a particle size of 50 nm under environmentally relevant nitrogen concentrations of nitrate, ammonium, and urea. We demonstrate that PS-NH2 inhibit M. aeruginosa differently in nitrate, urea, and ammonium, with inhibition rates of 51.87, 39.70, and 36.69%, respectively. It is caused through the differences in impairing cell membrane integrity, disrupting redox homeostasis, and varying nitrogen transport pathways under different nitrogen forms. M. aeruginosa respond to exposure of PS-NH2 by utilizing additional nitrogen to boost the production of amino acids, thereby enhancing the synthesis of MC, extracellular polymeric substances, and membrane phospholipids. Our results found that the threat of nanoplastics on primary producers can be regulated by the nitrogen forms in freshwater ecosystems, contributing to a better understanding of nanoplastic risks under environmentally relevant conditions.


Asunto(s)
Microcystis , Nitrógeno , Microcystis/efectos de los fármacos , Microcystis/metabolismo , Microcystis/crecimiento & desarrollo , Nitrógeno/química , Nitrógeno/metabolismo , Microcistinas/metabolismo , Poliestirenos/química , Tamaño de la Partícula , Microplásticos/metabolismo , Nanopartículas/química , Nitratos/metabolismo , Nitratos/química , Urea/metabolismo , Urea/química , Urea/farmacología
7.
Nucleic Acids Res ; 52(D1): D633-D639, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37897362

RESUMEN

Metabolite-associated cell communications play critical roles in maintaining the normal biological function of human through coordinating cells, organs and physiological systems. Though substantial information of MACCs has been continuously reported, no relevant database has become available so far. To address this gap, we here developed the first knowledgebase (MACC), to comprehensively describe human metabolite-associated cell communications through curation of experimental literatures. MACC currently contains: (a) 4206 carefully curated metabolite-associated cell communications pairs involving 244 human endogenous metabolites and reported biological effects in vivo and in vitro; (b) 226 comprehensive cell subtypes and 296 disease states, such as cancers, autoimmune diseases, and pathogenic infections; (c) 4508 metabolite-related enzymes and transporters, involving 542 pathways; (d) an interactive tool with user-friendly interface to visualize networks of multiple metabolite-cell interactions. (e) overall expression landscape of metabolite-associated gene sets derived from over 1500 single-cell expression profiles to infer metabolites variations across different cells in the sample. Also, MACC enables cross-links to well-known databases, such as HMDB, DrugBank, TTD and PubMed etc. In complement to ligand-receptor databases, MACC may give new perspectives of alternative communication between cells via metabolite secretion and adsorption, together with the resulting biological functions. MACC is publicly accessible at: http://macc.badd-cao.net/.


Asunto(s)
Comunicación Celular , Enfermedad , Bases del Conocimiento , Metaboloma , Humanos
8.
Water Res ; 235: 119911, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36989806

RESUMEN

Direct interspecies electron transfer (DIET) has been demonstrated to be an efficient type of mutualism in methanogenesis. However, few studies have reported its presence in mixed microbial communities and its trigger mechanism in the natural environment and engineered systems. Here, we reported DIET-like mutualism of Geobacter and methanogens in the planktonic microbiome for the first time in anaerobic electrochemical digestion (AED) fed with propionate, potentially triggered by excessive cathodic hydrogen (56 times higher than the lowest) under the electrochemical condition. In contrast with model prediction without DIET, the highest current density and hydrogen and methane production were concurrently observed at -0.2 V where an abundance of Geobacter (49%) and extracellular electron transfer genes were identified in the planktonic microbiome via metagenomic analysis. Metagenomic assembly genomes annotated to Geobacter anodireducens were identified alongside two methanogens, Methanothrix harundinacea and Methanosarcina mazei, which were previously identified to participate in DIET. This discovery revealed that DIET-like mutualism could be triggered without external conductive materials, highlighting its potentially ubiquitous presence. Such mutualism simultaneously boosted methane and hydrogen production, thereby demonstrating the potential of AED in engineering applications.


Asunto(s)
Geobacter , Propionatos , Simbiosis , Metano , Hidrógeno , Transporte de Electrón , Dieta , Reactores Biológicos , Anaerobiosis
9.
J Integr Plant Biol ; 65(4): 1041-1058, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36349965

RESUMEN

Both herbivory and jasmonic acid (JA) activate the biosynthesis of defensive metabolites in maize, but the mechanism underlying this remains unclear. We generated maize mutants in which ZmMYC2a and ZmMYC2b, two transcription factor genes important in JA signaling, were individually or both knocked out. Genetic and biochemical analyses were used to elucidate the functions of ZmMYC2 proteins in the maize response to simulated herbivory and JA. Compared with the wild-type (WT) maize, the double mutant myc2ab was highly susceptible to insects, and the levels of benzoxazinoids and volatile terpenes, and the levels of their biosynthesis gene transcripts, were much lower in the mutants than in the WT maize after simulated insect feeding or JA treatment. Moreover, ZmMYC2a and ZmMYC2b played a redundant role in maize resistance to insects and JA signaling. Transcriptome and Cleavage Under Targets and Tagmentation-Sequencing (CUT&Tag-Seq) analysis indicated that ZmMYC2s physically targeted 60% of the JA-responsive genes, even though only 33% of these genes were transcriptionally ZmMYC2-dependent. Importantly, CUT&Tag-Seq and dual luciferase assays revealed that ZmMYC2s transactivate the benzoxazinoid and volatile terpene biosynthesis genes IGPS1/3, BX10/11/12/14, and TPS10/2/3/4/5/8 by directly binding to their promoters. Furthermore, several transcription factors physically targeted by ZmMYC2s were identified, and these are likely to function in the regulation of benzoxazinoid biosynthesis. This work reveals the transcriptional regulatory landscapes of both JA signaling and ZmMYC2s in maize and provides comprehensive mechanistic insight into how JA signaling modulates defenses in maize responses to herbivory through ZmMYC2s.


Asunto(s)
Adaptación Fisiológica , Regulación de la Expresión Génica de las Plantas , Herbivoria , Zea mays , Animales , Benzoxazinas/metabolismo , Ciclopentanos/metabolismo , Insectos/fisiología , Oxilipinas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Adaptación Fisiológica/genética
10.
Water Res ; 223: 118993, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007401

RESUMEN

A better understanding of the interaction between nanoplastics and archaea is crucial to fill the knowledge gaps regarding the ecological safety of nanoplastics. As a vital source for global methane emissions, methanogenic archaea have unique cell membranes that are distinctly different from those in all other forms of life, little is known about their interaction with nanoplastics. Here, we show that polystyrene nanoparticles functionalized with sulfonic acid (PS-SO3H) and amino (PS-NH2) interact with this methanogenic archaeon in distinct ways. Although both of them have no significant phenotype effects on Methanosarcina acetivorans C2A, these nanoparticles could affect DNA-mediated transposition of this methanogenic archaeon, and PS-SO3H also downregulated nitrogen fixation, nitrogen cycle metabolic process, oxidoreductase activity, etc. In addition, both nanoplastics decreased the protein contents in the extracellular polymer substances (EPS), with distinct binding sequences to the functional groups of the EPS. The single particle atomic force microscopy revealed that the force between the amino group and the M. acetivorans C2A was greater than that of sulfonic acid group. Our results exhibit that the surface groups of polystyrene nanoparticles control their risk on the methanogenic archaea, and these effects might influence their contribution on global methane emission.


Asunto(s)
Methanosarcina , Nanopartículas , ADN/metabolismo , Metano/metabolismo , Methanomicrobiales/metabolismo , Methanosarcina/genética , Microplásticos , Nitrógeno/metabolismo , Oxidorreductasas , Poliestirenos , Ácidos Sulfónicos/metabolismo
11.
Front Chem ; 10: 881975, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646826

RESUMEN

Natural compounds (NCs) undergo complicated biotransformation in vivo to produce diverse forms of metabolites dynamically, many of which are of high medicinal value. Predicting the profiles of chemical products may help to narrow down possible candidates, yet current computational methods for predicting biotransformation largely focus on synthetic compounds. Here, we proposed a method of MetNC, a tailor-made method for NC biotransformation prediction, after exploring the overall patterns of NC in vivo metabolism. Based on 850 pairs of the biotransformation dataset validated by comprehensive in vivo experiments with sourcing compounds from medicinal plants, MetNC was designed to produce a list of potential metabolites through simulating in vivo biotransformation and then prioritize true metabolites into the top list according to the functional groups in compound structures and steric hindrance around the reaction sites. Among the well-known peers of GLORYx and BioTransformer, MetNC gave the highest performance in both the metabolite coverage and the ability to short-list true products. More importantly, MetNC seemed to display an extra advantage in recommending the microbiota-transformed metabolites, suggesting its potential usefulness in the overall metabolism estimation. In summary, complemented to those techniques focusing on synthetic compounds, MetNC may help to fill the gap of natural compound metabolism and narrow down those products likely to be identified in vivo.

12.
Dis Markers ; 2022: 9647706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251379

RESUMEN

BACKGROUND: To investigate microstructural alterations of white matter in retinal vein occlusion (RVO) patients by tract-based spatial statistics (TBSS) and diffusion tensor imaging (DTI). Material/Methods. DTI was performed on 14 RVO patients and 14 normal controls (HCs). We measured and recorded fractional anisotropy (FA) and radial diffusivity (RD) of white matter fibers and classified them through the receiver operating characteristic (ROC) curve and correlation analysis, respectively. RESULTS: The mean FA value of white matter in RVO patients is lower than the HCs, and the mean RD value in RVO patients increased, especially in the bilateral posterior thalamic, bilateral sagittal stratum, body of corpus callosum, cingulum, and fornix. The ROC curve of different brain regions showed high accuracy. Moreover, the mean FA and RD values were significantly correlated with visual and psychological disorders. CONCLUSION: TBSS could be regarded as an important method to reveal the alterations of white matter in RVO patients, indicating the underlying neurological mechanism of the RVO.


Asunto(s)
Anisotropía , Imagen de Difusión Tensora , Procesamiento de Imagen Asistido por Computador , Oclusión de la Vena Retiniana/patología , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
13.
World J Diabetes ; 13(2): 97-109, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35211247

RESUMEN

BACKGROUND: Diabetes mellitus is a metabolic disorder characterized by prolonged elevation of blood glucose due to various causes. Currently, the relationship between diabetic retinopathy (DR) and altered connectivity of brain function is unclear. AIM: To investigate the relationship between this brain activity and clinical manifestations and behaviors of DR patients by using the amplitude of low-frequency fluctuation (ALFF) technique. METHODS: Twenty-four DR patients and 24 healthy controls (HCs) matched for age and gender were enrolled. We measured and recorded average ALFF values of DR patients and HCs and then classified them using receiver operating characteristic (ROC) curves. RESULTS: ALFF values of both left and right posterior cerebellar lobe and right anterior cingulate gyrus were remarkably higher in the DR patients than in the HCs; however, DR patients had lower values in the bilateral calcarine area. ROC curve analysis of different brain regions demonstrated high accuracy in the area under the curve analysis. There was no significant relationship between mean ALFF values for different regions and clinical presentations in DR patients. Neuronal synchronization abnormalities in some brain regions of DR patients were associated with cognitive and visual disorders. CONCLUSION: Abnormal spontaneous brain activity was observed in many areas of DR patients' brains, which may suggest a possible link between clinical manifestations and behaviors in DR patients.

14.
Plant Physiol ; 188(4): 2325-2341, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-34958388

RESUMEN

To overcome pathogen infection, plants deploy a highly efficient innate immune system, which often uses hydrogen peroxide (H2O2), a versatile reactive oxygen species, to activate downstream defense responses. H2O2 is a potential substrate of aquaporins (AQPs), the membrane channels that facilitate the transport of small compounds across plasma membranes or organelle membranes. To date, however, the functional relationship between AQPs and H2O2 in plant immunity is largely undissected. Here, we report that the rice (Oryza sativa) AQP OsPIP2;2 transports pathogen-induced apoplastic H2O2 into the cytoplasm to intensify rice resistance against various pathogens. OsPIP2;2-transported H2O2 is required for microbial molecular pattern flg22 to activate the MAPK cascade and to induce the downstream defense responses. In response to flg22, OsPIP2;2 is phosphorylated at the serine residue S125, and therefore gains the ability to transport H2O2. Phosphorylated OsPIP2;2 also triggers the translocation of OsmaMYB, a membrane-anchored MYB transcription factor, into the plant cell nucleus to impart flg22-induced defense responses against pathogen infection. On the contrary, if OsPIP2;2 is not phosphorylated, OsmaMYB remains associated with the plasma membrane, and plant defense responses are no longer induced. These results suggest that OsPIP2;2 positively regulates plant innate immunity by mediating H2O2 transport into the plant cell and mediating the translocation of OsmaMYB from plasma membrane to nucleus.


Asunto(s)
Acuaporinas , Oryza , Acuaporinas/genética , Acuaporinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Biochem Biophys Res Commun ; 572: 105-111, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34364288

RESUMEN

We have previously demonstrated that Arabidopsis (Arabidopsis thaliana) phloem protein PP2-A1 is an integral component of resistance to the green peach aphid (Myzus persicae). Here, we report that M. persicae overcomes the resistance of PP2-A1 by using the salivary protein Mp1 as an energetic effector and an interactor of AtPP2-A1. Using the RNA interference technique, we demonstrated that Mp1 plays an essential role in the phloem-feeding activity of M. persicae. When the Mp1 gene was silenced, aphids incurred serious impairments not only in phloem-feeding activity, but also in survival and fertility. In essence, phloem-feeding activity was attributed to the molecular interaction between Mp1 and AtPP2-A1. The Mp1 and AtPP2-A1 interactions were localized to plant cell membranes by co-immunoprecipitation and bimolecular fluorescence complementation experiments. Furthermore, the interaction was found to be required for aphid feeding on Arabidopsis phloem. Overall, our results suggest that Mp1 is an important effector of M. persicae and interacts with AtPP2-A1 to facilitate infestation in the plant tissue by this insect.


Asunto(s)
Arabidopsis/química , Lectinas de Plantas/metabolismo , Proteínas y Péptidos Salivales/metabolismo , Animales , Áfidos , Arabidopsis/metabolismo , Unión Proteica
16.
World J Clin Cases ; 8(22): 5729-5736, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33344567

RESUMEN

BACKGROUND: Unsuspected gallbladder carcinoma (UGC) refers to cholecystectomy due to benign gallbladder disease, which is pathologically confirmed as gallbladder cancer during or after surgery. Port-site metastasis (PSM) of UGC following laparoscopic cholecystectomy is rare, especially after several years. CASE SUMMARY: A 55-year-old man presenting with acute cholecystitis and gallstones was treated by laparoscopic cholecystectomy in July 2008. Histological analysis revealed unexpected papillary adenocarcinoma of the gallbladder with gallstones, which indicated that the tumor had spread to the muscular space (pT1b). Radical resection of gallbladder carcinoma was performed 10 d later. In January 2018, the patient was admitted to our hospital for a mass in the upper abdominal wall after surgery for gallbladder cancer 10 years ago. Laparoscopic exploration and complete resection of the abdominal wall tumor were successfully performed. Pathological diagnosis showed metastatic or invasive, moderately differentiated adenocarcinoma in fibrous tissue with massive ossification. Immuno-histochemistry and medical history were consistent with invasion or metastasis of gallbladder carcinoma. His general condition was well at follow-up of 31 mo. No recurrence was found by ultrasound and epigastric enhanced computed tomography. CONCLUSION: PSM of gallbladder cancer is often accompanied by peritoneal metastasis, which indicates poor prognosis. Once PSM occurs after surgery, laparoscopic exploration is recommended to rule out abdominal metastasis to avoid unnecessary surgery.

17.
Sci Total Environ ; 730: 138930, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32388372

RESUMEN

We reported the effective removal of chromium(VI) (Cr(VI)) from wastewater with nitrogen and sulfur codoped micro-mesoporous carbon sheets (N,S-MMCSs), which were fabricated by pyrolysis of natural biomass (luffa sponge) followed by chemical activation and hydrothermal treatment. N,S-MMCSs possessed a hierarchical micro-mesoporous sheet-like framework, large specific surface area (1525.45 m2 g-1), high pore volume (1.21 cm3 g-1), and appropriate N (1.81 wt%) and S (1.01 wt%) co-doping. Batch adsorption experiments suggested that Cr(VI) adsorption by the N,S-MMCSs increased with increase the solution acidity, adsorbent dosage, Cr(VI) concentration, temperature, and time. The Cr(VI) adsorption was mainly controlled by the chemisorptions and could be well interpreted by the Langmuir isotherm and pseudo-second-order kinetic models. The maximum adsorption capacities of Cr(VI) were 217.39, 277.78, and 312.50 mg g-1 at 298, 308, and 318 K, respectively. The Cr(VI) adsorption procedure was spontaneous, endothermic, and randomness. The Cr(VI) adsorption mechanism followed the physical adsorption, electrostatic attraction, in situ reduction, and surface chelation. Besides, the density functional theory (DFT) calculation demonstrated that the N and S co-doping could decrease the adsorption energy and enhance the attractive interaction between N,S-MMCSs and Cr(VI) through the synergistic effect, and thus significantly improve the Cr(VI) adsorption property.


Asunto(s)
Biomasa , Purificación del Agua , Adsorción , Carbono , Cromo , Concentración de Iones de Hidrógeno , Cinética , Nitrógeno , Azufre , Contaminantes Químicos del Agua
18.
Cancer Manag Res ; 10: 1727-1734, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29983592

RESUMEN

INTRODUCTION: Orbital embryonal rhabdomyosarcoma is a rare childhood malignancy with a good prognosis, but the optimal treatment remains unclear. Using a population-based cancer registry, we assessed the prognoses and survival outcomes of patients with orbital embryonal rhabdomyosarcoma according to the local treatment strategy. PATIENTS AND METHODS: Patients diagnosed with orbital embryonal rhabdomyosarcoma between 1988 and 2012 as part of the Surveillance Epidemiology and End Results program were included. Univariate and multivariate Cox regression analyses were performed to determine the prognostic factors associated with cause-specific survival (CSS) and overall survival (OS). RESULTS: In total, 102 patients were included; their median age was 6 years, 78.4% were white, and 56.9% were male. The median tumor size was 30 mm. Of 20 patients with an available histologic grade, the tumors of 90% were poorly differentiated/undifferentiated. Of 92 patients with available surgical and radiotherapy (RT) statuses, 50 (54.3%), 36 (39.1%), and 6 (6.5%) received surgery and RT, primary RT, and primary surgery, respectively. Ninety-five patients (93.1%) received chemotherapy. The 5- and 10-year CSSs of the entire cohort were 94.3% and 92.2%, respectively. The 5- and 10-year OSs were 93.3% and 91.3%, respectively. In 95 patients who were followed up for at least 12 months, there were no significant prognostic factors related to CSS and OS. Furthermore, the local treatment strategy did not significantly affect CSS (P=0.29) or OS (P=0.468). CONCLUSION: There is no local treatment of choice for orbital embryonal rhabdomyosarcoma in terms of survival. However, RT is a reasonable alternative treatment to surgery.

19.
Materials (Basel) ; 11(6)2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891822

RESUMEN

Recently, lithium-sulfur (Li-S) batteries have been greeted by a huge ovation owing to their very high theoretical specific capacity (1675 mAh·g−1) and theoretical energy density (2600 Wh·kg−1). However, the full commercialization of Li-S batteries is still hindered by dramatic capacity fading resulting from the notorious “shuttle effect” of polysulfides. Herein, we first describe the development of a facile, inexpensive, and high-producing strategy for the fabrication of N-, O-, and S-tri-doped porous carbon (NOSPC) via pyrolysis of natural wheat straw, followed by KOH activation. The as-obtained NOSPC shows characteristic features of a highly porous carbon frame, ultrahigh specific surface area (3101.8 m²·g−1), large pore volume (1.92 cm³·g−1), good electrical conductivity, and in situ nitrogen (1.36 at %), oxygen (7.43 at %), and sulfur (0.7 at %) tri-doping. The NOSPC is afterwards selected to fabricate the NOSPC-sulfur (NOSPC/S) composite for the Li-S batteries cathode material. The as-prepared NOSPC/S cathode delivers a large initial discharge capacity (1049.2 mAh·g−1 at 0.2 C), good cycling stability (retains a reversible capacity of 454.7 mAh·g−1 over 500 cycles at 1 C with a low capacity decay of 0.088% per cycle), and superior rate performance (619.2 mAh·g−1 at 2 C). The excellent electrochemical performance is mainly attributed to the synergistic effects of structural restriction and multidimensional chemical adsorptions for cooperatively repressing the polysulfides shuttle.

20.
Sci Rep ; 8(1): 277, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29321619

RESUMEN

Land plants protect themselves from ultraviolet-B (UV-B) by accumulating UV-absorbing metabolites, which may also function as anti-insect toxins. Previous studies have shown that UV-B enhances the resistance of different plant species to pierce-sucking pests; however, whether and how UV-B influences plant defense against chewing caterpillars are not well understood. Here we show that UV-B treatment increased Spodoptera litura herbivory-induced jasmonic acid (JA) production in Arabidopsis and thereby Arabidopsis exhibited elevated resistance to S. litura. Using mutants impaired in the biosynthesis of JA and the defensive metabolites glucosinolates (GSs), we show that the UV-B-induced resistance to S. litura is dependent on the JA-regulated GSs and an unidentified anti-insect metabolite(s). Similarly, UV-B treatment also enhanced the levels of JA-isoleucine conjugate and defense-related secondary metabolites in tobacco, rice, and maize after these plants were treated with simulated herbivory of lepidopteran insects; consistently, these plants showed elevated resistance to insect larvae. Using transgenic plants impaired in JA biosynthesis or signaling, we further demonstrate that the UV-B-enhanced defense responses also require the JA pathway in tobacco and rice. Our findings reveal a likely conserved JA-dependent mechanism by which UV-B enhances plant defense against lepidopteran insects.


Asunto(s)
Vías Biosintéticas/efectos de la radiación , Ciclopentanos/metabolismo , Herbivoria , Lepidópteros , Oxilipinas/metabolismo , Plantas/metabolismo , Plantas/parasitología , Plantas/efectos de la radiación , Rayos Ultravioleta , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/parasitología , Arabidopsis/efectos de la radiación , Resistencia a la Enfermedad , Oryza/genética , Oryza/metabolismo , Oryza/parasitología , Oryza/efectos de la radiación , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/genética , Metabolismo Secundario , Transducción de Señal/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA